
EC-Bench: Benchmarking Onload and Offload Erasure
Coders on Modern Hardware Architectures ?

Haiyang Shi, Xiaoyi Lu, and Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering, The Ohio State University
{shi.876, lu.932, panda.2}@osu.edu

Abstract. Various Erasure Coding (EC) schemes based on hardware accelera-
tions have been proposed in the community to leverage the advanced compute
capabilities on modern data centers, such as Intel ISA-L Onload EC coders and
Mellanox InfiniBand Offload EC coders. These EC coders can play a vital role in
designing next-generation distributed storage systems. Unfortunately, there does
not exist a unified and easy way for distributed storage systems researchers and
designers to benchmark, measure, and characterize the performance of these dif-
ferent EC coders. In this context, we propose a unified benchmark suite, called
EC-Bench, to help the users to benchmark both onload and offload EC coders on
modern hardware architectures. EC-Bench provides both encoding and decod-
ing benchmarks with tunable parameter support. A rich set of metrics, including
latency, actual and normalized throughput, CPU utilization, and cache pressure,
can be reported through EC-Bench. Evaluations with EC-Bench demonstrate that
hardware-optimized offload coders (e.g. Mellanox-EC) have lower demands on
CPU and cache compared to onload coders, and highly optimized onload coders
(e.g., Intel ISA-L) outperform offload coders for most configurations.

1 Introduction
Replication, a redundancy scheme that replicates data across multiple machines and
racks, is widely used to guarantee high reliability and availability against the most fail-
ure scenarios in distributed storage systems. Since the data being generated increases
rapidly every day, petabytes of storage in today’s data centers are becoming common.
As a result, distributed systems cannot tolerate such a significant storage overhead
brought by using N-way replication, even though disk storage is inexpensive today.

To this end, latest distributed storage systems, such as Google Colossus [6], Face-
book HDFS-RAID [1, 36], the Quantcast File System [27] and Microsoft Azure Stor-
age System [15], are transforming to the use of Erasure Coding (EC) scheme, which
offers high reliability and availability at a prominently low storage overhead [42, 35].
For instance, Reed-Solomon [34] is a popular family of erasure codes used in Google
Colossus, Facebook HDFS-RAID, and many others. The Reed-Solomon codes with a
6+ 3 configuration, i.e., three parity chunks for every six data chunks, which deliv-
ers the same level of fault tolerance as 4-way replication scheme does, has a storage
overhead of 50%, while 4-way replication has a storage overhead of 300%.
? This research is supported in part by National Science Foundation grants CCF#1822987,

CNS#1513120, IIS#1636846, and OAC#1664137.



2 H. Shi, X. Lu, D. K. Panda

The trade-off of deploying erasure codes in distributed storage systems instead of
replication is performance. The use of erasure coding results in a significant increase
in computation overhead due to the time-consuming EC encoding and decoding oper-
ations. With such a trade-off, the erasure-encoded distributed storage systems should
benefit from modern high-performance hardware architectures. The advancements in
CPU/GPU architectures and network interconnects have enabled the design of high-
performance erasure coding libraries [16, 24] for alleviating the compute overheads in-
volved in erasure coding-based storage resilience. This motivates us to believe that era-
sure coding could be a viable primary fault-tolerance mechanism for next-generation
distributed storage systems.

High-performance EC coders can be categorized in two general ways: (1) EC On-
load, where host-based libraries such as Jerasure [30] and Intel ISA-L [16] are em-
ployed, and, (2) EC Offload, wherein Mellanox InfiniBand HCA and GPU-like acceler-
ators based libraries such as Gibraltar [8] and Mellanox-EC [23] are leveraged. With the
increased compute and remote I/O required for computing and distributing EC-coded
files, EC onload can enable higher storage efficiency that is inherent to erasure-coded
storage, at the cost of performance and CPU usage. On the other hand, the high CPU
usage can be alleviated with the help of EC Offload designs, that offload computation
to the Mellanox HCAs or GPU devices, but suffer the loss of performance due to its
limited compute capabilities in comparison to CPU cores.

As we can see, efficient EC coders can play a significant role in designing next-
generation distributed storage systems. However, each of these EC coders has different
APIs, implementations, and performance characteristics. To guide the users to choose
an appropriate one for their target platforms, the community needs a unified and easy-
to-use benchmark suite to measure the performance and expose the insights of different
coders.

Unfortunately, there does not exist such a benchmark suite for distributed storage
systems researchers and designers to benchmark, measure, and characterize the perfor-
mance of these different EC coders. To address this issue, in this paper, we propose
a unified benchmark suite, called EC-Bench, to help the erasure coding researchers
and distributed storage system designers to benchmark both onload and offload EC
coders on modern hardware architectures. EC-Bench provides both encoding and de-
coding benchmarks with tunable parameter support. The supported parameters include
the number of data chunks, the number of parity chunks, the number of bits in a word,
and the size of each chunk. To help the users to understand the EC coders in multi-
ple dimensions, EC-Bench reports a rich set of metrics including latency, actual and
normalized throughput, CPU utilization, and cache pressure.

With EC-Bench, we conduct experiments on four open-source libraries (i.e., Jera-
sure [30], ISA-L [16], Gibraltar [8], and Mellanox-EC [23]) to evaluate the performance
of onload and offload erasure coders. Our in-depth evaluation exposes impressive per-
formance insights for different coders on modern CPU, GPU, and InfiniBand architec-
tures. For instance, the experiments illustrate that hardware-optimized offload coders
(e.g., Mellanox-EC) have less CPU utilization and cache pressure than onload coders,
and highly optimized onload coders (e.g., Intel ISA-L) perform much better than offload
coders due to the use of advanced instruction sets.



EC-Bench: Benchmarking Onload and Offload Erasure Coders 3

The rest of the paper is organized as follows. Section 2 presents the necessary back-
ground on EC. Section 3 presents our proposed design for EC-Bench. Section 4 de-
scribes our detailed evaluation. Section 5 discusses related studies. Finally, we conclude
in Section 6.

2 Background
2.1 Erasure Coding

Conventionally, a storage system tolerates faults by replicating data to different nodes
and racks. For example, GFS, HDFS, and Ceph apply 3-way replication as their de-
fault storage mechanisms [11, 39, 43]. Unfortunately, replicating a tremendous amount
of data can incur significant storage overhead. Therefore, erasure coding (EC), which
can offer the same reliability as or higher than replication with much lower storage
overhead, becomes an attractive alternative. The Reed-Solomon (RS) code and its vari-
ations are the most popular erasure codes employed in distributed file systems (e.g.,
HDFS, Ceph, QFS, Google Colossus, Facebook f4, Baidu Atlas and Backblaze [26, 18,
6, 3, 27, 5, 43, 4]). In general, the input data is split into chunks with a fixed size (i.e.,
chunk size). An RS coder, denoted as RS(k,m), computes m parity chunks for k data
chunks. These k+m chunks are organized as a group called stripe. For chunks belong-
ing into the same stripe, RS(k,m) is able to recover the entire stripe from up to m chunk
losses, with a storage overhead of m/k. In contrast, the replication scheme has to store
m+1 replicas to achieve the same reliability; thus the storage overhead of replication is
as high as m. For example, the RS(6,3) code has a storage overhead of 50% and deliv-
ers the same fault-tolerance as 4-way replication that incurs a 3x overhead. One of the
disadvantages in applying erasure coding to storage systems, however, is high pressures
of erasure operations on system performance.

2.2 Onload and Offload Erasure Coders

To overcome the high computational costs involved with erasure coding, two broad
categories of coders have been proposed in the community to take advantage of modern
hardware capabilities: (1) onload coders, which are highly optimized for advanced CPU
capabilities (e.g., Intel SSE [41] and AVX [17]), and, (2) offload coders, which offload
erasure operations to accelerators (e.g, GPU [8], Host Channel Adapters (HCA) [24]).
These hardware-optimized erasure coders can potentially facilitate EC to be employed
as a viable choice for fault-tolerance in modern distributed storage systems.

3 EC-Bench Design

In this section, we discuss the design details, parameter space, and main metrics of our
benchmarking framework, i.e., EC-Bench.

3.1 Design

EC-Bench consists of two benchmarks, one for encoding and one for decoding.
Encoding Benchmark: For encoding benchmark, a large in-memory data file of size
D are split into multiple data blocks of size k× chunk size. Each encoding operation
of the evaluated erasure coder encodes a piece of data block into k+m data and parity



4 H. Shi, X. Lu, D. K. Panda

chunks.
Decoding Benchmark: In order to generate data and parity chunks (i.e., stripes),
such that we can mimic chunk corruption by nullifying some chunks, a preprocessing
stage before performing decoding operations is necessary. In the preprocessing stage,
it encodes a large in-memory data file of size D into multiple encoded stripes of size
(k+m)×chunk size, and randomly zeros m chunks out of k+m chunks in each encoded
stripe. After the preprocessing stage, each decoding operation of the evaluated erasure
coder recovers an encoded stripe. To fairly compare all erasure coders, both data and
parity chunks need to be recovered in the benchmark. For some erasure coders, such as
Gibraltar [8], which only recover data chunks in decoding, we will re-encode to recover
corrupt parity chunks.

3.2 Parameter Space

As aforementioned in Section 2, the most important parameters for all erasure coders
are the number of data chunks k, the number of parity chunks m, the number of bits in
a word w, and the size of each chunk chunk size. Therefore, in EC-Bench, the values of
k, m, w, and chunk size may be chosen at the discretion of the user and according to the
constraints of erasure coders to evaluate.

3.3 Metrics

In addition to latency and throughout, which are the most typical metrics for bench-
marking erasure coders, we also introduce CPU utilization and cache pressure as main
metrics to evaluate onload and offload erasure coders. In this section, we clarify the
definition and describe the approach used for each metric in EC-Bench.

Latency The latency in EC-Bench is defined as the time spent on erasure coding oper-
ations (i.e., encoding and decoding).

Throughput The throughput in EC-Bench is defined as the size of data and parity
chunks divided by the time spent on erasure coding operations (i.e., encoding and de-
coding). Let D denote the size of k data chunks, and t denote the time consumed by
erasure coding operations. Such that the size of each chunk is D/k. As illustrated in
Section 3.1, for both encoding and decoding operations, the erasure coder operates on
k chunks and generates another m different chunks. It means that each benchmark will
output an in-memory data file of size D · (k+m)/k given an input of size D. Hence, the
definition of throughput turns out to be:

Thr =
D
t
· k+m

k
(1)

As shown in the equation, the value of throughput is related to k and m. Some-
times, however, it is helpful to compare the throughput across different combinations
of k and m. Therefore, we also introduce the normalized throughput as a metric. Since
for both encoding and decoding operations, it generates D ·m/k bytes worth of coding
data. Studies [29, 44] demonstrate that it takes k−1 XOR operations to produce a byte.



EC-Bench: Benchmarking Onload and Offload Erasure Coders 5

Therefore, if we define the normalized throughput as the number of XOR operations
taken place in erasure coding operations divided by the time consumed, the metric is
fair for all combinations of k and m. Thus, the normalized throughput is represented as:

Thrnorm =
D
t
· (k−1) ·m

k
=

(k−1) ·m
k+m

·Thr (2)

CPU Utilization A well-known advantage of offload architecture is the low-consumption
of CPU cycles, which frees up CPU for computation tasks and finally increases overall
system efficiency and performance. Therefore, another important metric to differenti-
ate onload and offload erasure coders in EC-Bench is CPU utilization. To precisely get
the CPU utilization of each evaluated erasure coder, we employ PAPI [40] APIs to col-
lect the total number of CPU cycles consumed by erasure coding operations. We define
CPU utilization as the total number of consumed CPU cycles divide by the time spent
on erasure coding operations. Its equation representation is:

CPU Utilization =
CPU cycles

t
(3)

Cache Pressure Concerning the architecture characteristics of onload and offload era-
sure coders, cache pressure is another vital metric introduced in EC-Bench. With the
fact that, for a specific erasure coder, the maximum performance point is achieved
when the coder makes the best use of the L1 cache [29], cache pressure is at least a
complementary to other metrics to explore performance differences between onload
and offload coders. For who is developing a new erasure code, cache pressure may as
well be a non-trivial metric to analyze performance bottleneck. PAPI APIs are used to
collect the number of cache misses in different cache levels. Therefore, cache pressure
is defined as the total number of L1 cache misses divided by the time spent on erasure
coding operations. Therefore, its formula is:

Cache Pressure =
L1 Cache Misses

t
(4)

4 Evaluation
In this section, we conduct experiments on four open-source libraries with EC-Bench
to evaluate the performance of onload and offload erasure coders. This section also
includes additional details on our experimental setup and results.

4.1 Open Source Libraries

These four erasure coder libraries are freely available from various resources on the
Internet. The following list represents their descriptions.
Jerasure: Jerasure [30] is a CPU-based library released in 2007 that supports a wide
variety of erasure codes. The w of Reed-Solomon code in Jerasure could be 8, 16, or



6 H. Shi, X. Lu, D. K. Panda

32.
ISA-L: Intel Intelligent Storage Acceleration Library (ISA-L) [16] is a collection of
optimized low-level functions including erasure coding. The erasure coding functions
are optimized for Intel instructions, such as Intel SSE [41], vector [17], and encryption
instructions. The w of Reed-Solomon code in ISA-L is fixed to 8.
Gibraltar: Gibraltar [8] is a GPU-based library for Reed-Solomon coding. The Reed-
Solomon code in Gibraltar is based on GF(28), which means it has a fixed w = 8.
Mellanox-EC: Mellanox-EC [24] proposed by Mellanox is an HCA-based library
for Reed-Solomon coding. The erasure coding operations are handled in host channel
adapters (HCA). The w of Reed-Solomon code could be 4 and 8 in the latest ConnectX-
5 IB NICs.

4.2 Experimental Setup

Our cluster consists of 20 nodes, and each is equipped with 2.40GHz Intel(R) Xeon(R)
CPU E5-2680 v4 (28 cores, 32KB L1 cache, 256KB L2 cache, and 35MB L3 cache),
128GB DRAM, two K80 GPUs, and a ConnectX-5 IB-EDR (100 Gbps) NIC. The op-
erating system employed in the cluster is CentOS 7.2. Other necessary drivers and li-
braries are CUDA 8.0, Mellanox OFED 4.2, PAPI 5.2.0.0 with perf 3.10.0, Jerasure 2.0,
ISA-L 2.18.0, Gibraltar 1, and Mellanox-EC 2. Note that Jerasure in our experiments is
compiled without SSE support, such that Jerasure represents onload erasure coder with
common instruction sets while ISA-L with advanced instruction sets.

Experiments in this paper are all conducted with Reed-Solomon code as it is the
only common erasure code among chosen libraries as illustrated in Section 4.1. We
also fix the value of w into 8, such that all onload and offload coders are compara-
ble. Let RS(k,m) denote the configuration of Reed-Solomon code computing m parity
chunks for k data chunks. We examine onload and offload coders with four popular
configurations, RS(3,2), RS(6,3), RS(10,4) and RS(17,3) used by HDFS, Ceph, QFS,
Google, Facebook, Baidu and Backblaze [26, 18, 6, 3, 27, 5, 4], etc.

4.3 Experimental Results

It is well-known that decoding operations are similar to encoding operations for RS
code. The throughput performance of encoding and decoding for RS(3,2) depicted in
Figure 1 demonstrates that encoding performance and decoding performance of all se-
lected coders have similar trends. One interesting observation in the figure is that the
decoding performance of ISA-L to recover m (m equals 2 in Figure 1.) lost chunks is
better than its encoding performance to generate m parity chunks. In the experiment,
the m-by-m matrix used for decoding has a smaller size than the generator matrix (i.e.,
a k-by-m matrix) for encoding, such that the decoding operation requires less compute
power; thus, erasure coders, especially high-performance erasure coders such as ISA-L,
deliver better decoding performance.

1 Github: https://github.com/jaredjennings/libgibraltar,
commit: c93f9d8c3be70ded173822cdca2e51900a3f5ed1

2 Github: https://github.com/Mellanox/EC,
commit: 00bf091aa14322baf4425f8a6d5d134e91fe2a5c



EC-Bench: Benchmarking Onload and Offload Erasure Coders 7

Jerasure ISA-L Mellanox-EC Gibraltar

Th
ro

ug
hp

ut
(M

B
/s

ec
)

0
2250
4500
6750
9000

11250
13500
15750
18000

1 16 256 4K 64K 1M 16M
Chunk Size

1 16 256 4K 64K 1M 16M
Chunk Size

(a) Encode (b) Decode
Fig. 1: Throughput Performance with Varied Chunk Sizes for RS(3, 2)

Since both encoding performance and decoding performance of different coders
have similar tendencies, we only show encoding results in this section due to space
limitation. In our experiments, Gibraltar coder is not able to run with chunk size =
{32MB,64MB}, such that corresponding numbers in the following figures are left blank.

Throughput Figures 2-5 depict throughput performance comparisons among onload
and offload coders with various chunk sizes ranging from 1 byte to 64 MB. Normalized
throughput is showing on the right-hand-side y-axis, and each data point in the figures
corresponds to two values, i.e., throughput and normalized throughput. In all experi-
ments, onload coders outperform offload coders for small chunk sizes. For instance, in
Figure 2, both Jerasure and ISA-L perform better than Mellanox-EC and Gibraltar with
chunk sizes smaller than 32KB. On the other hand, throughput performance of offload
coders improves significantly with increasing chunk sizes, and offload coders are able
to defeat some onload coders if chunk size is large enough. Figure 2 demonstrates that
Mellanox-EC and Gibraltar coders outperform Jerasure once chunk size is larger than
32KB. The reason behind the increasing throughput of offload coders with growing
chunk sizes is that large chunk sizes alleviate the overhead of transferring data from
host to device [10]. In Figures 3-5, we observe trends similar to the trend demonstrated
in Figure 2.

Normalized Throughput After being normalized, throughput performance across dif-
ferent configurations is comparable [29]. Figure 6 shows how the normalized through-
put performance of onload and offload coders changes across multiple configurations
(e.g., RS(3,2)). ISA-L, Mellanox-EC and Gibraltar coders are sensitive to configuration
changes while Jerasure keeps consistent across different configurations. One possible
reason behind this observation is that different coders have nonequivalent optimal par-
allelism supports. ISA-L, Mellanox-EC, and Gibraltar have good support to larger-scale
parallel configurations; thus, they perform good with RS(10,4) and RS(17,3). In con-
trast, Jerasure (compiled without SSE support) prefers smaller-scale parallel configura-
tions; therefore, it achieves its best performance with configuration RS(3,2).



8 H. Shi, X. Lu, D. K. Panda

0
40
80
120
160
200
240
280
320

0
50

100
150
200
250
300
350
400

1 4 16
0
1600
3200
4800
6400
8000
9600
11200
12800

0
2000
4000
6000
8000

10000
12000
14000
16000

32 512 8K
128K 2M 32M

Chunk Size

Jerasure ISA-L Mellanox-EC Gibraltar

Th
ro

ug
hp

ut
(M

B
/s

ec
)

N
or

m
al

iz
ed

Th
ro

ug
hp

ut
(M

B
/s

ec
)

Fig. 2: Throughput Performance with Varied Chunk Sizes for RS(3, 2)

0
80
160
240
320
400
480
560
640

0
48
96

144
192
240
288
336
384

1 4 16
0
2500
5000
7500
10000
12500
15000
17500
20000

0
1500
3000
4500
6000
7500
9000

10500
12000

32 512 8K
128K 2M 32M

Chunk Size

Jerasure ISA-L Mellanox-EC Gibraltar

Th
ro

ug
hp

ut
(M

B
/s

ec
)

N
or

m
al

iz
ed

Th
ro

ug
hp

ut
(M

B
/s

ec
)

Fig. 3: Throughput Performance with Varied Chunk Sizes for RS(6, 3)

0
72
144
216
288
360
432
504
576

0
28
56
84

112
140
168
196
224

1 4 16
0
3240
6480
9720
12960
16200
19440
22680
25920

0
1260
2520
3780
5040
6300
7560
8820

10080

32 512 8K
128K 2M 32M

Chunk Size

Jerasure ISA-L Mellanox-EC Gibraltar

Th
ro

ug
hp

ut
(M

B
/s

ec
)

N
or

m
al

iz
ed

Th
ro

ug
hp

ut
(M

B
/s

ec
)

Fig. 4: Throughput Performance with Varied Chunk Sizes for RS(10, 4)

0
84
168
252
336
420
504
588
672

0
35
70

105
140
175
210
245
280

1 4 16
0
3000
6000
9000
12000
15000
18000
21000
24000

0
1250
2500
3750
5000
6250
7500
8750

10000

32 512 8K
128K 2M 32M

Chunk Size

Jerasure ISA-L Mellanox-EC Gibraltar

Th
ro

ug
hp

ut
(M

B
/s

ec
)

N
or

m
al

iz
ed

Th
ro

ug
hp

ut
(M

B
/s

ec
)

Fig. 5: Throughput Performance with Varied Chunk Sizes for RS(17, 3)



EC-Bench: Benchmarking Onload and Offload Erasure Coders 9

N
or

m
al

iz
ed

Th
ro

ug
hp

ut
(M

B
/s

ec
)

0

5000

10000

15000

20000

25000

RS(3, 2) RS(6, 3) RS(10, 4)RS(17, 3)

Onload Coders 2KB

0

5000

10000

15000

20000

25000

RS(3, 2) RS(6, 3) RS(10, 4)RS(17, 3)

Offload Coders 512KB

Jerasure ISA-L Mellanox-EC Gibraltar

Fig. 6: Normalized Throughput Performance of Onload and Offload Coders across Mul-
tiple Configurations. The chunk sizes for onload and offload coders are fixed into one of their
near-optimal chunk sizes. In this case, 2KB for onload coders and 512KB for offload coders.

CPU Utilization Considering CPU utilization of onload and offload coders, Figures 7-
10 illustrate that offload coders make better use of CPU cycles to carry out erasure
operations compared with onload coders. For example, it shows that, in Figure 7,
Mellanox-EC consumes 0.41 million cycles per second while running with a chunk
size of 64MB. In the meantime, Jerasure and ISA-L take 2950.5 and 2932.23 million
cycles per second, respectively. Another observation is that CPU utilization for both
onload and offload coders decrease with an increase in chunk size.

Figures 7-10 also show an interesting fact that ISA-L deals with chunk sizes smaller
than 32 bytes and other chunk sizes in two different approaches (details in the imple-
mentation of function ec encode data avx2 [2]). That’s why in Figures 7-14, there are
big jumps in the curves of ISA-L in the cases of 32 bytes.

0
1250
2500
3750
5000
6250
7500
8750

10000

1 4 16 64 256 1K 4K 16K 64K
256K 1M 4M 16M 64M

Chunk Size

Jerasure
ISA-L
Mellanox-EC
Gibraltar

C
PU

U
til

iz
at

io
n

(m
ill

io
n

cy
cl

es
/s

ec
)

Fig. 7: CPU Utilization with Varied Chunk Sizes for RS(3, 2)

Cache Pressure The cache pressures of onload and offload coders are depicted in Fig-
ures 11-14. Though Gibraltar has more L1 cache misses than ISA-L for some chunk
sizes, the overall cache pressure introduced by offload erasure coders is less than that



10 H. Shi, X. Lu, D. K. Panda

C
PU

U
til

iz
at

io
n

(m
ill

io
n

cy
cl

es
/s

ec
)

0
1250
2500
3750
5000
6250
7500
8750

10000

1 4 16 64 256 1K 4K 16K 64K
256K 1M 4M 16M 64M

Chunk Size

Jerasure
ISA-L
Mellanox-EC
Gibraltar

Fig. 8: CPU Utilization with Varied Chunk Sizes for RS(6, 3)

C
PU

U
til

iz
at

io
n

(m
ill

io
n

cy
cl

es
/s

ec
)

0
1250
2500
3750
5000
6250
7500
8750

10000

1 4 16 64 256 1K 4K 16K 64K
256K 1M 4M 16M 64M

Chunk Size

Jerasure
ISA-L
Mellanox-EC
Gibraltar

Fig. 9: CPU Utilization with Varied Chunk Sizes for RS(10, 4)

C
PU

U
til

iz
at

io
n

(m
ill

io
n

cy
cl

es
/s

ec
)

0
1250
2500
3750
5000
6250
7500
8750

10000

1 4 16 64 256 1K 4K 16K 64K
256K 1M 4M 16M 64M

Chunk Size

Jerasure
ISA-L
Mellanox-EC
Gibraltar

Fig. 10: CPU Utilization with Varied Chunk Sizes for RS(17, 3)

introduced by onload coders. Within all coders, Mellanox-EC influences cache least,
while Jerasure has constant pressure on cache for relatively large chunk sizes. The dif-
ferent cache behaviors of ISA-L around chunk size = 32 across four chosen configura-
tions (e.g., RS(3,2)) also indicate the same observation in Section 4.3 that ISA-L has
two internal approaches to carry out chunk sizes smaller than 32 bytes and other chunk
sizes.



EC-Bench: Benchmarking Onload and Offload Erasure Coders 11

L1
C

ac
he

M
is

s
(m

ill
io

ns
/s

ec
)

0
100
200
300
400
500
600
700
800

1 4 16 64 256 1K 4K 16K 64K
256K 1M 4M 16M 64M

Chunk Size

Jerasure
ISA-L
Mellanox-EC
Gibraltar

Fig. 11: Cache Pressure with Varied Chunk Sizes for RS(3, 2)

L1
C

ac
he

M
is

s
(m

ill
io

ns
/s

ec
)

0
100
200
300
400
500
600
700
800

1 4 16 64 256 1K 4K 16K 64K
256K 1M 4M 16M 64M

Chunk Size

Jerasure
ISA-L
Mellanox-EC
Gibraltar

Fig. 12: Cache Pressure with Varied Chunk Sizes for RS(6, 3)

L1
C

ac
he

M
is

s
(m

ill
io

ns
/s

ec
)

0
100
200
300
400
500
600
700
800

1 4 16 64 256 1K 4K 16K 64K
256K 1M 4M 16M 64M

Chunk Size

Jerasure
ISA-L
Mellanox-EC
Gibraltar

Fig. 13: Cache Pressure with Varied Chunk Sizes for RS(10, 4)

L1
C

ac
he

M
is

s
(m

ill
io

ns
/s

ec
)

0
100
200
300
400
500
600
700
800

1 4 16 64 256 1K 4K 16K 64K
256K 1M 4M 16M 64M

Chunk Size

Jerasure
ISA-L
Mellanox-EC
Gibraltar

Fig. 14: Cache Pressure with Varied Chunk Sizes for RS(17, 3)



12 H. Shi, X. Lu, D. K. Panda

5 Related Work

Over the years, as erasure coding becomes an attractive alternative to replication, several
works have been focusing on employing erasure coding for performing data recovery
on data centers and benchmarking erasure coders for performance evaluation.

Erasure Coding for Storage Systems: Erasure codes, especially Reed-Solomon
code and its variations, have been adopted in famous storage systems [26, 18, 6, 3, 27,
5, 43, 4], because of its higher reliability with lower storage overhead. To further reduce
the overhead introduced by erasure coding, some research works are proposed, such as
Partial-Parallel-Repair [25], Repair Pipelining [20], and [9, 32, 33]. Several researchers
have also designed many other classes of erasure codes to reduce the computational
complexity involved in Reed-Solomon codes [7, 14, 19, 13, 15, 12]. In the meantime,
erasure coding is also being utilized to design key-value stores, including Cocytus [45],
EC-Cache [31], and RDMA-accelerated Memcached with online EC support [37].

Hardware Acceleration and Optimizations for Erasure Coding: Motivated by
the advanced features supported by modern CPU architectures, many research works [16,
22, 28] are enabling the design of high-speed EC by taking advantage of instruction sets
like SSE, AVX, etc. Along similar lines, [24] and [8] proposed offload approaches to
reduce CPU consumption and leverage the capabilities of GPUs and next-generation
network adapters, respectively. On the other hand, our previous work [38] has proposed
a new concept Multi-Rail EC, which enables upper-layer applications to leverage avail-
able high-performance hardware in parallel to accelerate erasure coding.

Benchmarking Erasure Coding Libraries: Recent studies have evaluated on-
load erasure coders with metrics throughput or latency. For instance, [21] performs
several experiments to test the running times of some popular software-based onload
erasure coders. [29] conducts a throughput performance evaluation and examination
of open-source erasure coding libraries and contributes a way to normalize throughput
performance across different configurations (e.g., RS(3,2), RS(6,3) and RS(10,4)).

The increased focus on employing EC in storage systems and enabling EC on mod-
ern hardware serves as a motivation of this paper. Based on our knowledge of modern
hardware architectures, we propose a benchmark which supports latency & throughput
metrics as well as architecture-related metrics, such as CPU utilization and cache pres-
sure, to fully evaluate different erasure coders, especially onload and offload coders.

6 Conclusion

In this work, we design a benchmark framework (i.e., EC-Bench) for evaluating erasure
coders, especially for onload and offload coders. EC-Bench supports four main met-
rics (i.e., latency, throughput, CPU utilization, and cache pressure), which we think are
sufficient to explore the performance characteristics of onload and offload coders fully.
Through in-depth performance evaluations of four erasure coders, we demonstrate that
EC-Bench is able to reveal their performance differences in terms of throughput, CPU
utilization, and cache pressure. The performance results illustrate that onload coders
consumes more CPU and cache resources than offload coders (e.g., Mellanox-EC), and
highly optimized onload coders (e.g., Intel ISA-L) typically outperform offload coders.



EC-Bench: Benchmarking Onload and Offload Erasure Coders 13

References

1. Facebook’s Erasure Coded Hadoop Distributed File System (HDFS-RAID). https://

github.com/facebookarchive/hadoop-20, 2010.
2. ec highlevel func.c. https://github.com/intel/isa-l/blob/master/erasure_

code/ec_highlevel_func.c#L98, 2018.
3. Apache Hadoop 3.0.0-alpha2. http://hadoop.apache.org/docs/r3.0.0-alpha2/,

2017.
4. Backblaze Online Backup. https://www.backblaze.com/blog/reed-solomon/, 2015.
5. Ceph Erasure Coding. http://docs.ceph.com/docs/master/rados/operations/

erasure-code/, 2016.
6. Colossus: Successor to the Google File System (GFS). https://www.systutorials.

com/3202/colossus-successor-to-google-file-system-gfs/, 2012.
7. Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman, James Leong,

and Sunitha Sankar. Row-diagonal Parity for Double Disk Failure Correction. In Proceed-
ings of the 3rd USENIX Conference on File and Storage Technologies, pages 1–14. USENIX
Association Berkeley, CA, USA, 2004.

8. Matthew Curry, Anthony Skjellum, H Lee Ward, and Ron Brightwell. Gibraltar: A Reed-
Solomon Coding Library for Storage Applications on Programmable Graphics Processors.
In Concurrency and Computation: Practice and Experience, volume 23, pages 2477–2495,
12 2011.

9. Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J Wainwright, and Kannan
Ramchandran. Network Coding for Distributed Storage Systems. IEEE transactions on
information theory, 56(9):4539–4551, 2010.

10. Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, Shinpei Kato, and Masato Edahiro. Data
Transfer Matters for GPU Computing. In Parallel and Distributed Systems (ICPADS), 2013
International Conference on, pages 275–282. IEEE, 2013.

11. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. In ACM
SIGOPS operating systems review, volume 37, pages 29–43. ACM, 2003.

12. Kevin M Greenan, Xiaozhou Li, and Jay J Wylie. Flat XOR-based Erasure Codes in Storage
Systems: Constructions, Efficient Recovery, and Tradeoffs. In Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th Symposium on, pages 1–14. IEEE, 2010.

13. James Lee Hafner. WEAVER Codes: Highly Fault Tolerant Erasure Codes for Storage Sys-
tems. In Proceedings of the 4th Conference on USENIX Conference on File and Storage
Technologies - Volume 4, FAST’05, pages 16–16, Berkeley, CA, USA, 2005. USENIX As-
sociation.

14. C. Huang and L. Xu. STAR : An Efficient Coding Scheme for Correcting Triple Storage
Node Failures. IEEE Transactions on Computers, 57(7):889–901, July 2008.

15. Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit Gopalan,
Jin Li, Sergey Yekhanin, et al. Erasure Coding in Windows Azure Storage. In Usenix Annual
Technical Conference, pages 15–26. Boston, MA, 2012.

16. Intel Intelligent Storage Acceleration Library (Intel ISA-L). https://software.intel.

com/en-us/storage/ISA-L, 2016.
17. Introduction to Intel R© Advanced Vector Extensions. https://software.intel.com/

en-us/articles/introduction-to-intel-advanced-vector-extensions.
18. Chunbo Lai, Song Jiang, Liqiong Yang, Shiding Lin, Guangyu Sun, Zhenyu Hou, Can Cui,

and Jason Cong. Atlas: Baidu’s Key-value Storage System for Cloud Data. In Mass Storage
Systems and Technologies (MSST), 2015 31st Symposium on, pages 1–14. IEEE, 2015.

19. Mingqiang Li and Patrick P. C. Lee. STAIR Codes: A General Family of Erasure Codes for
Tolerating Device and Sector Failures. Trans. Storage, 10(4):14:1–14:30, October 2014.



14 H. Shi, X. Lu, D. K. Panda

20. Runhui Li, Xiaolu Li, Patrick PC Lee, and Qun Huang. Repair Pipelining for Erasure-
coded Storage. In Proceedings of the 2017 USENIX Annual Technical Conference (USENIX
ATC’17), pages 567–579, 2017.

21. Michael Luby. Benchmark Comparisons of Erasure Codes, 2002.
22. Aleksei Marov and Andrey Fedorov. Optimization of RAID Erasure Coding Algorithms for

Intel Xeon Phi. In Networking, Architecture and Storage (NAS), 2016 IEEE International
Conference on, pages 1–4. IEEE, 2016.

23. Mellanox. HDFS Erasure Coding Offload Plugin. https://github.com/Mellanox/EC/
tree/master/HDFS, 2016.

24. Mellanox. Understanding Erasure Coding Offload. https://community.mellanox.com/
docs/DOC-2414, 2016.

25. Subrata Mitra, Rajesh Panta, Moo-Ryong Ra, and Saurabh Bagchi. Partial-Parallel-Repair
(PPR): A Distributed Technique for Repairing Erasure Coded Storage. In Proceedings of the
Eleventh European Conference on Computer Systems, page 30. ACM, 2016.

26. Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin, Weiwen Liu,
Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang, et al. f4: Facebook’s
Warm BLOB Storage System. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, pages 383–398. USENIX Association, 2014.

27. Michael Ovsiannikov, Silvius Rus, Damian Reeves, Paul Sutter, Sriram Rao, and Jim Kelly.
The Quantcast File System. Proceedings of the VLDB Endowment, (11):1092–1101, 2013.

28. James S. Plank, Kevin M. Greenan, and Ethan L. Miller. Screaming Fast Galois Field Arith-
metic Using Intel SIMD Instructions. In 11th USENIX Conference on File and Storage
Technologies (FAST 13), pages 298–306, San Jose, CA, 2013. USENIX Association.

29. James S Plank, Jianqiang Luo, Catherine D Schuman, Lihao Xu, Zooko Wilcox-O’Hearn,
et al. A Performance Evaluation and Examination of Open-Source Erasure Coding Libraries
for Storage. In Proccedings of the 7th Conference on File and Storage Technologies, FAST
’09, pages 253–265, Berkeley, CA, USA, 2009. USENIX Association.

30. James S Plank, Scott Simmerman, and Catherine D Schuman. Jerasure: A Library in C/C++
Facilitating Erasure Coding for Storage Applications. 2008.

31. KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and Kannan Ramchandran.
EC-Cache: Load-Balanced, Low-Latency Cluster Caching with Online Erasure Coding. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
USENIX Association, 2016.

32. KV Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B Shah, and Kannan Ramchandran.
Having Your Cake and Eating It Too: Jointly Optimal Erasure Codes for I/O, Storage, and
Network-bandwidth. In FAST, pages 81–94, 2015.

33. KV Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and Kannan
Ramchandran. A Solution to the Network Challenges of Data Recovery in Erasure-coded
Distributed Storage Systems: A Study on the Facebook Warehouse Cluster. In HotStorage,
2013.

34. Irving S Reed and Gustave Solomon. Polynomial Codes Over Certain Finite Fields. Journal
of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

35. Rodrigo Rodrigues and Barbara Liskov. High availability in dhts: Erasure coding vs. repli-
cation. In International Workshop on Peer-to-Peer Systems, pages 226–239. Springer, 2005.

36. Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos, Alexandros G.
Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur. XORing Elephants: Novel
Erasure Codes for Big Data. Proceedings of the VLDB Endowment, 6(5):325–336, March
2013.

37. Dipti Shankar, Xiaoyi Lu, and Dhabaleswar K Panda. High-Performance and Resilient Key-
Value Store with Online Erasure Coding for Big Data Workloads. In Distributed Comput-



EC-Bench: Benchmarking Onload and Offload Erasure Coders 15

ing Systems (ICDCS), 2017 IEEE 37th International Conference on, pages 527–537. IEEE,
2017.

38. Haiyang Shi, Xiaoyi Lu, Dipti Shankar, and Dhabaleswar K Panda. High-Performance
Multi-Rail Erasure Coding Library over Modern Data Center Architectures: Early Experi-
ences. In Proceedings of the ACM Symposium on Cloud Computing, pages 530–531. ACM,
2018.

39. Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop
Distributed File System. In Mass Storage Systems and Technologies (MSST), 2010 IEEE
26th Symposium on, pages 1–10. IEEE, 2010.

40. Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting Performance Data
with PAPI-C. In Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E.
Nagel, editors, Tools for High Performance Computing 2009, pages 157–173, Berlin, Hei-
delberg, 2010. Springer Berlin Heidelberg.

41. Using Intel R© Streaming SIMD Extensions and Intel R© Integrated Performance Primitives to
Accelerate Algorithms. https://software.intel.com/en-us/articles/, 2016.

42. Hakim Weatherspoon and John D Kubiatowicz. Erasure coding vs. replication: A quan-
titative comparison. In International Workshop on Peer-to-Peer Systems, pages 328–337.
Springer, 2002.

43. Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn. Ceph:
A Scalable, High-Performance Distributed File System. In Proceedings of the 7th symposium
on Operating systems design and implementation, pages 307–320. USENIX Association,
2006.

44. Lihao Xu and Jehoshua Bruck. X-code: MDS Array Codes with Optimal Encoding. IEEE
Transactions on Information Theory, 45(1):272–276, 1999.

45. Heng Zhang, Mingkai Dong, and Haibo Chen. Efficient and Available In-memory KV-Store
with Hybrid Erasure Coding and Replication. In 14th USENIX Conference on File and
Storage Technologies (FAST 16), pages 167–180, Santa Clara, CA, February 2016. USENIX
Association.


