
INEC: Fast and Coherent In-Network Erasure Coding
Haiyang Shi and Xiaoyi Lu

Department of Computer Science and Engineering, The Ohio State University
{shi.876, lu.932}@osu.edu

Abstract—Erasure coding (EC) is a promising fault tolerance

scheme that has been applied to many well-known distributed

storage systems. The capability of Coherent EC Calculation

and Networking on modern SmartNICs has demonstrated that

EC will be an essential feature of in-network computing. In

this paper, we propose a set of coherent in-network EC prim-

itives, named INEC. Our analyses based on the proposed ↵-

� performance model demonstrate that INEC primitives can

enable different kinds of EC schemes to fully leverage the EC

offload capability on modern SmartNICs. We implement INEC

on commodity RDMA NICs and integrate it into five state-of-

the-art EC schemes. Our experiments show that INEC primitives

significantly reduce 50th, 95th, and 99th percentile latencies, and

accelerate the end-to-end throughput, write, and degraded read

performance of the key-value store co-designed with INEC by

up to 99.57%, 47.30%, and 49.55%, respectively.

Index Terms—Next Generation Networking, In-Network Com-

puting, Fault Tolerance, Erasure Coding

I. INTRODUCTION

Data-intensive applications have increasing demands for
high-performance and reliable storage systems on modern
HPC clusters. Many existing HPC storage systems adopt the
n-way replication technique to ensure data reliability and
availability with high storage cost [1]–[3]. On the other hand,
Erasure Coding (EC) has become a prevalent alternative to
data replication in fault-tolerant distributed storage systems for
years. One of the most popular erasure codes is called Reed-
Solomon (RS) code [4], which has been widely adopted in
many distributed storage systems and parallel file systems [5]–
[15]. The use of EC in storage systems can significantly
reduce the storage cost; however, it usually causes performance
degradation as the trade-off.

To alleviate the performance overhead of using EC in
storage systems, many advanced EC schemes [11], [16]–
[22] have been proposed in the community to accelerate
EC. Among these studies, we have surveyed five different
kinds of EC schemes, including conventional RS Code [4],
Local Reconstruction Code (LRC) [11], Partial Parallel Repair
(PPR) Code [16], Repair Pipelining (ECPipe) Code [17], and
Tripartite Graph based EC (TriEC) [18], which can represent
the state-of-the-art EC designs.

Figure 1 summarizes these schemes and their required func-
tional primitives, while more details about these EC schemes
can be found in Section II-B. From this figure, we can clearly
see the fact that all these EC schemes have their encoding
and decoding calculations tightly coupled with communication

This work is supported in part by NSF research grant CCF-1822987.

tasks for data distribution (represented by edges in the figure)
in distributed storage systems. Take PPR for example (see
the description in the caption of Figure 1 for more details),
the required primitive set of Layer-2 for constructing a PPR
protocol is {wait (for receive completion), EC, wait (for
EC completion), send}. It is obvious that the first wait and
send are networking operations, and EC calculation is tightly
interleaved in.

We can see similar functional requirements of other EC
schemes as well in Figure 1. This common pattern exposes
that the performance of EC schemes employed in distributed
storage systems is heavily relying on the performance of
underlying networking systems. Such a demand on high-
performance networks draws the attentions of some major
network interface card (NIC) vendors to provide support for
EC.

A. Motivation and Challenges
The high-speed interconnect community has proposed sev-

eral commodity SmartNICs that support EC on the NIC. For
instance, Mellanox ConnectX-5 delivers advanced EC offload
capability [22]. However, the current-generation SmartNICs’
APIs expose EC and networking functionality disjointedly,
without awareness of the fact that EC calculation is in close
conjunction with networking. To take full advantage of Smart-
NICs’ capability and reduce CPU involvement for further
shortening the latency, one desired design approach is Coher-
ent EC Calculation and Networking, or Coherent In-Network

EC. Instead of exposing separate APIs for performing EC
and networking operations incoherently, coherent in-network
EC provides joint APIs, such as recv-ec-send to perform EC
calculation and networking coherently. These coherent APIs
can offload a task set onto SmartNICs, which will take care
of waiting for receive completion, performing EC calculation,
waiting for EC completion, and sending out results. By this
means, recv-ec-send is a primitive that is required by PPR as
discussed above, yet requires much less CPU involvement. As
depicted in Figure 2, with coherent in-network EC, a recv-
ec-send primitive offloads a task list to a SmartNIC, and the
completion of each task automatically activates the execution
of the subsequent task without CPU involvement.

Even though the benefits of coherent in-network EC are
clearly shown in Figure 2, there are still many challenges to be
resolved to provide complete and efficient coherent in-network
EC functionality. First of all, as we see in Figure 1, different
EC protocols require different communication graphs and steps
for finishing EC tasks. To support all of them effectively and

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 c�2020 IEEE

EC Schemes

Primitive Set

EC Schemes

Primitive Set

EC
wait
send

encode

wait

decode

wait
EC send

encode

send

wait
EC
wait
send

wait
XOR

RS TriEC

decode

wait

wait
XOR
wait
send

EC
wait
send

LRC

group

global
parities

encode

EC
wait
send

wait wait
EC send

PPR

wait
XOR

wait
EC
wait
send

EC
wait
send

ECPipe

wait

wait
EC
wait
send

EC
wait
send

group

group

global
parities

decode group

local parity

Fig. 1: State-of-the-Art EC Schemes and Primitive Sets for Layers. Take PPR as an example, since PPR is a reduction tree
structure, all nodes can be categorized into root node, internal nodes, and leaf nodes. Let Layer-1 denote root node, Layer-2 denote internal
nodes, and Layer-3 denote leaf nodes. To reconstruct chunk D⇤ =

Pk
i {Si · g0i}, where Si indicates a survived chunk and g0i indicates the

corresponding coefficient for reconstruction, nodes on Layer-3 calculate RLayer�3 = Si · g0i and send the results to Layer-2. Such that the
primitive set of Layer-3 is {EC (i.e., calculate RLayer�3), wait (for EC completion), send}. In the meantime, nodes on Layer-2 wait for
RLayer�3 from children, calculate RLayer�2 = Si ·g0i+

P
children RLayer�3, and send RLayer�2 to Layer-1. In a nutshell, Layer-2’s primitive

set is {wait (for RLayer�3), EC (i.e., calculate RLayer�2), wait (for EC completion), send}. Finally, Layer-1 XORs on all the received results
from Layer-2 to get the repaired chunk (i.e., D⇤ =

P
children RLayer�2), so its primitive set is {wait (for RLayer�2), XOR}.

Post recv/EC

Incoherent EC Calculation and
Networking

CPU

Mem

NIC

NIC

Mem

CPU

Post recv-ec-send Post send

(R)DMA Poll CQ

Coherent EC Calculation and
Networking

EC

Fig. 2: Incoherent vs. Coherent. Note that DMAs issued by
NICs in performing EC and RDMA SEND/WRITE WITH IMM are
not shown for simplicity and clarity.

efficiently, what should be the common primitives that the
underlying network needs to provide?

In addition, designing coherent in-network EC schemes is
challenging because we need to find a fast way to connect
many subsequent tasks together to construct a distributed EC
pipeline and trigger pre-posted tasks on the NIC without CPU
involvement. Can these be doable for all possibly defined EC
primitives and the EC protocols mentioned above?

Moreover, from the bottom (hardware driver) up (applica-
tion), how can we analyze and verify the effectiveness and
efficiency of the proposed EC primitive and protocol designs?

B. Contribution

To overcome these challenges, some prior studies [18], [22]
shed light on the opportunities to design efficient coherent

in-network EC for conventional or a particular enhanced RS
code. However, these designs can either only support one type
of code or just partially offload some steps to the network,
which makes them not fully address the challenges we have
identified above and results in suboptimal performance. On the
other hand, recent studies [22], [23] also point out that mod-
ern Remote Direct Memory Access (RDMA) capable NICs
(RNICs) provide some low-level mechanisms such as RDMA
WAIT, which can trigger events between two communication
channels on the same RNIC.

With these opportunities, this paper proposes a holistic
approach to design a set of fast and coherent in-network EC
primitives, named INEC. Our approach makes the following
contributions: 1) We successfully identify that to fully support
all five different state-of-the-art EC protocols, we only need
three types of essential coherent in-network EC primitives (i.e.,
ec/xor-send, recv-ec/xor-send, and recv-ec/xor). 2) To fully
offload these EC primitives and protocols to the network, we
propose efficient designs with RDMA WAIT to deliver fast
EC and networking capability, and have implemented INEC
primitives within Mellanox OFED driver. To the best of our
knowledge, this is the first design of proposing a complete set
of coherent in-network EC primitives with RDMA WAIT on
RNICs to support multiple types of EC protocols. 3) We come
up with an ↵-� performance model to analyze the performance
gains of INEC primitives for five state-of-the-art EC schemes.
4) Through benchmarking and co-designing with a key-value
store system, the proposed INEC primitives with five state-of-
the-art EC protocols are validated from the bottom up. Our
microbenchmarks show that INEC primitives accelerate state-

of-the-art EC schemes’ encoding and decoding bandwidth
by up to 5.87⇥ and 2.94⇥, respectively. Evaluations on
YCSB workloads illustrate that the co-designed key-value
store with INEC attains up to 99.57% improvement for end-
to-end throughput, and reduces up to 47.30% and 49.55% for
write and degraded read latency, respectively.

II. BACKGROUND

A. Erasure Coding Basics
A Reed-Solomon (RS) code [4] can be specified as RS(k, m),

which means the encoder takes k data chunks and generates m
parity chunks to form a stripe (i.e., k+m coded chunks), and
the decoder is able to reconstruct the original data chunks from
any k chunks out of the stripe. A typical encoding procedure
is represented by C ⇥ D = E, in which D is a vector of
k data chunks, C is a matrix of k + m rows and k columns
represented by C =

h
I
G

i
, and E is a vector of k + m

encoded chunks. I is a k ⇥ k identity matrix, such that the
first k chunks after encoding are identical with the data chunks,
and we name the other m chunks as parity chunks. This
property is named as systematic, which enables applications
to read original content without extra computation if all data
chunks (i.e., the first k chunks in the stripe) survive. The
m⇥ k matrix G is a generator matrix yielding the Maximum
Distance Separable (MDS) property, which guarantees that any
k chunks are sufficient to reconstruct the original data chunks.

The decoding procedure is based on the fundamental prop-
erty of matrix C, which is such that any k ⇥ k submatrix is
invertible. Let {S1, S2, · · · , Sk} denote any k survived chunks
in a stripe and Ci denote the corresponding row to Si in matrix
C. Therefore, data chunks can be reconstructed by multiplying
survived chunks with the inverse of the submatrix of C, which
is composed of C1,C2, · · · ,Ck.

B. State-of-the-Art EC Schemes
Several state-of-the-art EC schemes have been proposed in

the community to accelerate EC calculation. In addition to the
conventional RS code, we have mainly studied the following
enhanced codes in this paper.
Local Reconstruction Code (LRC) [11] is an EC scheme
used in Microsoft Azure, which splits k data chunks in each
stripe into l groups, and generates one local parity chunk for
each group during encoding. If a group loses one data chunk,
the missing chunk is able to be recovered by other data chunks
in the group plus the local parity chunk for this group (see
LRC in Figure 1). In this case, the coder only needs to decode
on k/l chunks, which reduces the network overhead as well
as the time to perform data reconstruction. On the other hand,
if there are multiple lost chunks in a group, LRC will fall
back to RS scheme, such that the coder fetches any k healthy
chunks from data chunks in multiple groups as well as global
parity chunks to proceed with the reconstruction.
Partial Parallel Repair (PPR) [16] divides a reconstruction
operation into sub-operations and schedules them on multiple
servers for better overlapping and parallelism. The involved
servers are arranged as a reduction tree (see PPR in Figure 1),

thus the reconstruction takes logarithmic time steps to com-
plete. The tree-like structure fully utilizes available network
resources and significantly reduces repair time.
Repair Pipelining (ECPipe) [17] separates a chunk into a set
of slices and pipelines the reconstruction across storage nodes
in units of slices. As we can see that ECPipe in Figure 1 repairs
a chunk by dividing each involved chunk into three slices
and conducting pipelined repair in units of slices in parallel.
Therefore, it balances repair traffic, appropriately makes use
of network bandwidth, and accelerates chunk repair.
Tripartite Graph-Based EC (TriEC) [18] decomposes en-
coding and decoding calculation into sub-operations, and
assigns them to involved storage nodes. These nodes are put
into different layers in a tripartite graph according to the
category of operations assigned to each node (see TriEC in
Figure 1). The tripartite graph structure takes advantage of
EC offload capability on SmartNICs to bring more parallelism
and overlapping, fully use network and compute resources, and
reduce encoding and decoding time.

C. RDMA WAIT on Modern High-Speed Networks
RDMA WAIT is a network-level operation that enables

work request (WR) triggering across two communication chan-
nels. Although it is not defined in RDMA specification [24],
modern commodity RNICs have supported it (e.g., Mellanox
CORE-Direct [25] and Cross Channel [26]). As illustrated in
Figure 3, a WAIT WR holds execution of subsequent pre-
posted WRs (i.e., Op) in the same send queue (SQ) until a
pre-specified number of completions in a completion queue
(CQ) are met. Note that the trigger and activate operations are
conducted by RNIC without CPU involvement. Since WAIT
WRs can only be triggered by work completions, RDMA
WAIT has to cooperate with two-sided RDMA operations such
as SEND and WRITE WITH IMM.

Activate
Trigger

WAIT

Op

Completion

Work Request Completion/Send Queue

Fig. 3: Overview of RDMA WAIT

III. INEC DESIGN

This section illustrates the design of INEC, including ex-
planations of proposed primitives and implementation details.

A. Primitive Design
In a thorough exploration, we abstract three categories

of coherent in-network EC primitives, which, together with
networking functionality (e.g., RDMA SEND and RECV),
are sufficient to express all the state-of-the-art EC schemes
in Figure 1. Listing 1 represents the APIs of INEC primitives.
ec/xor-send: In almost every state-of-the-art EC scheme, there
are nodes being responsible for performing EC/XOR calcula-
tion and sending the output to other nodes in the cluster (e.g.,
Layer-1 in the encoding structures of RS and LRC in Figure 1).

We abstract this process as ec/xor-send, which enables upper-
layer applications to offload this process to SmartNICs and
benefit from coherent in-network EC. As shown in Listing 1,
inec ec send is the function of the ec/xor-send primitive.
Parameter calc represents a data structure which describes
calculator type (i.e., EC or XOR calculator), generator matrix
for EC calculation, etc. The memory layout is described by the
mem parameter, while stripe represents the communication
channels for sending the EC stripe.

Listing 1: INEC Primitives

int inec_ec_send(struct inec_calc_desc *calc, struct
inec_mem_desc *mem, struct inec_stripe_desc *stripe);

int inec_recv_ec_send(struct inec_wait_desc *wait, struct
inec_calc_desc *calc, struct inec_mem_desc *mem,
struct inec_stripe_desc *stripe);

int inec_recv_ec(struct inec_wait_desc *wait, struct
inec_calc_desc *calc, struct inec_mem_desc *mem);

recv-ec/xor-send: Many EC schemes in the community de-
compose encoding and/or decoding calculation into subprob-
lems and schedule them to different nodes involved in the
computation to gain better parallelism, overlapping, and full
use of available resources. These EC schemes, therefore, have
complex and well-defined structures. Our exploration shows
that the internal nodes of these structures share the same
process pattern. As demonstrated in Figure 1, Layer-2 (i.e.,
internal nodes) of PPR, ECPipe, and TriEC, waits for the
result(s) from upstream(s) to arrive, computes on both local
chunk(s) and received result(s), and sends the output(s) to
downstream(s). The process is abstracted as recv-ec/xor-send.

Primitive recv-ec/xor-send requires one more parameter
(i.e., the wait parameter of inec recv ec send in Listing 1),
which indicates the completion queues (CQs) and the number
of completions of each CQ to wait for.
recv-ec/xor: Another common process pattern is depicted by
the decoding process of RS in Figure 1. Layer-1 of RS receives
chunks from remote peers and performs EC calculation on the
received chunks to reconstruct data chunks. The same process
also appears in LRC, PPR, ECPipe, and TriEC. We use the
recv-ec/xor primitive to abstract this process.

The function of the recv-ec/xor primitive is inec recv ec in
Listing 1. Parameter wait specifies CQs and the number of
receive completions of each CQ to wait for. The calculator
type and generator matrix for EC computation are defined in
calc. The memory to place received and generated chunks
is identified by the mem parameter.

The key technique required to implement INEC on Smart-
NICs is an event-driven mechanism, such that the subsequent
sub-tasks in a primitive can be triggered by the completion of
previous sub-tasks. In Section III-C, we will elaborate on how
to efficiently implement INEC on commodity RNICs.

B. Primitive Analysis

In this section, we extend the methodology proposed in [27]
to study the performance factors of INEC primitives.

We analyze INEC along three substantial dimensions:
Operations: The number of operations must be performed

to accomplish an in-network EC request. The EC basics in
Section II-A illustrate that EC computation is a kind of matrix
multiplication, so we can get the time complexities of EC
calculations by counting the operations occurred in matrix
multiplications. Recall that the time complexity of multiplying
an x ⇥ y matrix and a y ⇥ z matrix is O(x · y · z). On
the other hand, the time complexity of computing XOR of
n chunks is O(n · c), where c is the chunk size. Based on
these time complexities, we conclude the Operations metric
for each INEC primitive within each EC scheme in Table I.
Take ec send of RS(k,m) encode for example, it multiplies
an m⇥k generator matrix with a k⇥ c matrix consisting of k
data chunks. Therefore, the number of operations taken place
in the ec send primitive is O(k · m · c).
Communication: We use T = L + n · c/B to model
the communication, where T is communication time, L is
network latency, n is the number of chunks to be transmitted
simultaneously, c is chunk size, and B is network bandwidth.
For instance, the recv ec send primitive of ‘TriEC Encode’
receives one chunk and outputs m intermediate chunks, such
that its Communication metric is O(L + m · c/B).
Gains: To estimate the potential benefits of coherent in-
network primitives, we introduce the Gains metric, which in-
cludes three sub metrics: 1) Metric States indicates the number
of extra states needs to be maintained for each coherent request
with respect to its incoherent counterpart. As aforementioned
in Section III-A, INEC primitives have to track extra states to
determine when to activate subsequent tasks. For instance, the
use of recv ec send in PPR(k,m) needs to maintain O(in)
states (in is the number of input chunks), such that the receive
completions of in input chunks can trigger the subsequent EC
computation. In the meantime, it also maintains one extra state
to make the subsequent send operation after EC computation
to be triggerable. Hence, the States metric of recv ec send
within PPR(k,m) is �O(in). Note that we add a minus sign to
indicate that the States metric is a kind of overhead. 2) Metric
CPU Involvement is the amount of CPU involvement reduced
by employing INEC. As illustrated in Figure 2, recv ec send
saves O(1) CPU involvement for each input/output chunk.
We summarize the number of saved CPU involvement for all
primitives in the table. 3) Metric DMA is the amount of DMA
traffic saved by coherent in-network primitives. In practice, if
there is only one output chunk to be sent, INEC can use the
same QP for both EC computation and communication. Such
that, SmartNICs can directly send the output chunk after EC
operation completes, rather than putting the output chunk in
host memory and reading the chunk again from host memory
for sending. This optimization is able to reduce O(c) DMA
traffic for each output chunk. Further reducing DMA traffic
for other cases will be our future work.

From Table I, we can see that the performance of all INEC
primitives can be modeled as ↵ · c + �, referred to as ↵-�
model, where ↵ is a function of EC configurations, network
bandwidth, and DMA traffic, and � is a function of network
latency, in-network states, and CPU involvement. If chunk
size c becomes small, the total cost is dominated by network

TABLE I: Primitive Analysis. Note that the decode functionality in the table refers to recovering a single erased chunk. c: chunk
size, in: number of received chunks, L: network latency, B: network bandwidth.

EC Scheme Func. Primitive Operations Communication
Gains

States CPU Inv. DMA

RS(k,m)
encode ec send O(k · m · c) O(L + (k + m) · c/B) �O(m) O(m) 0

decode recv ec O(k2 · c) O(L + k · c/B) �O(k) O(k) 0

LRC(k,l,r)
encode ec send O(k · (l + r) · c) O(L + (k + l + r) · c/B) �O(l + r) O(l + r) 0

decode recv ec O((k/l)2 · c) O(L + k · c/(B · l)) �O(k/l) O(k/l) 0

PPR(k,m) decode
ec send O(c) O(L + c/B) �O(1) O(1) O(c)

recv ec send O(in · c) O(L + in · c/B) �O(in) O(in) O(c)

recv xor O(in · c) O(L + in · c/B) �O(in) O(in) 0

ECPipe(k,m) decode ec send O(c) O(L + c/B) �O(1) O(1) O(c)

recv ec send O(c) O(L + c/B) �O(1) O(1) O(c)

TriEC(k,m)

encode recv ec send O(m · c) O(L + m · c/B) �O(m) O(m) O(m · c)
recv xor O(k · c) O(L + k · c/B) �O(k) O(k) 0

decode ec send O(c) O(L + c/B) �O(1) O(1) O(c)

recv xor send O(k · c) O(L + k · c/B) �O(k) O(k) O(c)

latency, number of in-network states, and amount of CPU
involvement. On the other hand, if chunk size c is large, both
EC computation and network communication dominate the
entire procedure. In this scenario, reducing DMA traffic could
gain considerable performance improvement.

For large scale EC configurations (i.e., k+m for RS, PPR,
ECPipe, and TriEC, and k + l + r for LRC are large), INEC
needs to maintain a large number of states on NICs, which
possibly influences the on-NIC resource management and thus
cuts down the performance of EC computation and/or network
communication. However, we find that most widely-used EC
configurations [5], [8], [11], [12] are not in very large scale,
and our evaluations on these configurations (see Section IV)
validate that INEC is able to deliver better performance with
commonly-adopted configurations.

C. Implementation and Optimization on RNICs

As aforementioned in Section II-C, RDMA WAIT is an
event-driven mechanism on RNICs to support work request
(WR) triggering. In this section, we explain the details about
implementing INEC primitives with RDMA WAIT.

As clarified in Figure 4a, posting an ec/xor-send actually
posts an EC/XOR work request (WR) to the calculator’s send
queue (SQ), and a WAIT WR followed by a SEND WR to
each SQ for sending chunks. Multiple WRs to the same SQ
are posted by one posting, which reduces PCIe transactions
and CPU use [28]. Upon completion of the posted EC/XOR
WR, the WAIT WRs in the front of SQs are triggered, and the
subsequent SEND WRs are therefore activated and executed
by the RNIC without involving the host CPU.

Figure 4b illustrates the detail of recv-ec/xor-send. Different
from ec/xor-send, a post of recv-ec/xor-send also posts a
number of WAIT WRs to the calculator’s SQ, and the number
of WAIT WRs is equal to the number of CQs specified by the
caller. These WAIT WRs will finally be triggered one by one

by receive completions and the last WAIT WR will activate
the EC/XOR calculation. The completion of EC/XOR WR will
trigger the WAIT WRs in the front of all SQs, thus SEND WRs
are activated, and results are sent out. In our implementation,
WAIT WRs and the EC/XOR WR to the calculator’s SQ is
posted by the same PCIe transaction, which further reduces
CPU involvement and latency.

For the recv-ec/xor primitive, as shown in Figure 4c, several
WAIT WRs and an EC/XOR WR are posted into the calcu-
lator’s SQ by one post and these WAIT WRs will finally be
triggered by receive completions of the CQs being waited for.
In the end, the EC/XOR WR is activated by the last WAIT
WR in front of it.

We implemented INEC primitives within Mellanox OFED
driver 4.7-3.2.9.0. Several optimizations are applied to over-
come the existing limitations of Mellanox OFED driver. 1)
Modifying underneath QPs used by EC calculators to make
EC computation to be triggerable, 2) Implementing XOR
calculators with the Mellanox Vector CALC capability, which,
by current revision, only exposes low-level APIs for bitwise
XOR calculation, and 3) Applying doorbell batching technique
to post as many WRs as possible in one doorbell to reduce
CPU-generated memory mapped I/Os (MMIOs).

D. Dynamic EC Graph
Towards flexibly integrating INEC primitives into state-of-

the-art EC schemes, we introduce an abstraction to construct
EC schemes and automatically apply INEC primitives. The
abstraction is a directed acyclic graph, named Dynamic EC
Graph (DEG), in which, each vertex represents a node of EC
schemes and edges denote data transmission. Figure 5 displays
DEGs constructed for PPR(6, 3) and TriEC(3, 2).

Upper-layer applications construct DEGs in runtime with
EC scheme specific layout algorithms (e.g., use PPR layout
algorithm to construct PPR’s DEG). Once a DEG is con-
structed, data flow along the edges in the graph, and each

Trigger

(a) ec/xor-send

Work Request

EC/XOR

RNIC

WAIT

SEND

WAIT

SEND WAIT

RNIC

RECV

RECV

WAIT

EC/XOR

RNIC

WAIT

SEND

WAIT

SENDRECV

RECV

WAIT

WAIT

EC/XOR

Trigger

Trigger
Trigger

Trigger

Trigger

T
rigger

Send/Recv Queue Activate Next Work Request

(b) recv-ec/xor-send (c) recv-ec/xor

Fig. 4: Design Details of Proposed Primitives

ec-send

DEG of PPR(6,3)

recv-ec-send

recv-xor

Pritimives DEG of TriEC(3,2)

Layer-1

Layer-2

Layer-3 recv-ec

recv-ec-send

send

Pritimives

Fig. 5: DEGs of PPR(6,3) and TriEC(3,2)

vertex (i.e., node) makes use of one INEC primitive to join
in the computation and data transmission. The basic rules
for picking up INEC primitives are: 1) vertices with zero
indegree (i.e., Layer-3 of PPR and Layer-1 of TriEC) choose
ec/xor-send or just send if there is no computation, 2) vertices
with zero outdegree (i.e., Layer-1 of PPR and Layer-3 of
TriEC) leverage recv-ec/xor, 3) other vertices (i.e., Layer-2
of PPR and TriEC) utilize recv-ec/xor-send, and 4) selecting
proper calculator (i.e., EC or XOR calculator) based on EC
scheme’s requirement. For PPR in Figure 5, the final primitive
solution is: recv-ec/xor for Layer-1 (root vertex), recv-ec/xor-
send for Layer-2 (internal vertices), and ec/xor-send for Layer-
3 (leaf vertices). For the calculator selection, based on different
functionality of vertices in PPR’s DEG, EC calculators are
chosen for primitives recv-ec/xor-send and ec/xor-send (i.e.,
for Layer-2 and Layer-3), and XOR calculators are used for
the recv-ec/xor primitive (i.e., for Layer-1).

E. Co-Design Case Study: INEC-Cache

In this section, we implement a key-value store, named
INEC-Cache, based on memcached (v1.5.12). The imple-
mentation demonstrates the performance implication of in-
tegrating state-of-the-art EC schemes and employing INEC
primitives on storage systems.

The design of INEC-Cache adopts an interleaved architec-
ture, which is similar to the architectures of Cocytus [29]
and TriEC-Cache [18]. There are three kinds of INEC-Cache
nodes, i.e., Agent node, Data Cache node, and Parity Cache
node. An Agent node and multiple Data Cache and Parity
Cache nodes form a Mem Stripe, such that each EC stripe is
processed, stored, and repaired within a Mem Stripe. Mean-
while, data chunks in an EC stripe are finally stored onto Data
Cache nodes, and parity chunks onto Parity Cache nodes. The
Agent node in each Mem Stripe processes clients’ requests,

dispatches control messages and data to Data Cache and Parity
Cache nodes in the same Mem Stripe, and responds to the
clients. Mem Stripes are arranged in a circularly interleaved
manner across the cluster to balance the use of CPU, memory,
and network resources.

Agent node issues control messages to notify Data Cache
and Parity Cache nodes to construct a DEG on demand.
Each Data Cache and Parity Cache node decides whether
and how to join in constructing the DEG on 1) local rank,
and the rank(s) of the chunk(s) to be reconstructed, 2) DEG
topology information and 3) DEG constructing algorithm of
currently employed EC scheme. For instance, DEGs for writes
and normal reads of all EC schemes in Figure 1 have to be
constructed when INEC-Cache is up since the required DEGs
for writes and normal reads do not change through all the time.
However, DEGs for repairing might be different because the
chunk(s) to be recovered would change over time. Moreover,
repairing DEGs for various EC schemes are diverse as well,
since they adopt dissimilar repair structures.

INEC-Cache maintains metadata (e.g., local rank, topology
information) separately from the data with replication scheme
for efficient access. When node failures happen, INEC-Cache
takes different actions for different situations. When an Agent
node fails, the Mem Stripe it belongs to becomes unreachable
until a new Agent node joins in and becomes recovered. If
Data Cache and/or Parity Cache nodes fail, and the number
of failed nodes is no more than the max number tolerated
by the employed EC scheme, the Mem Stripe becomes read-
only until other nodes join in with reconstructed chunks. The
failure recovery process is carried out on the server side, which
is transparent to upper-layer applications.

IV. EVALUATION

In this section, we evaluate five state-of-the-art EC schemes
implemented with the proposed INEC primitives to illustrate
performance benefits brought by INEC. We choose a custom
benchmark suite [30] and Yahoo Cloud Serving Benchmark
(YCSB) [31] to evaluate the performance of INEC primi-
tives and its co-designed key-value store (i.e., INEC-Cache).
The baseline of all experiments in this section refers to the
same implementation yet with incoherent EC calculation and
networking approach, i.e., posting send, posting ec/xor, and
polling for completion separately.

The experiments are conducted on a cluster with up to
17 nodes. Each node is equipped with Intel Broadwell E5-

16

32

48

baseline proposed

5

10

15
⇥102

13

26

39
⇥103

(3,2)

21

42

63

9

18

27

27

54

81

(6,3)

12
8

51
2

2K 8K

27

54

81

16
K

64
K
25

6K

11

22

33

1M 4M 16
M

34

68

102 (12,4)

Chunk Size

L
at

en
cy

(u
s)

(a) RS

19

38

57

baseline proposed

9

18

27
⇥102

25

50

75
⇥103

(4,2,2)

22

44

66

9

18

27

27

54

81 (6,2,2)

12
8

51
2

2K 8K

28

56

84

16
K

64
K
25

6K

11

22

33

1M 4M 16
M

34

68

102 (12,2,2)

Chunk Size

L
at

en
cy

(u
s)

(b) LRC

15

30

45

baseline proposed

5

10

15
⇥102

2

4

6
⇥104

(3,2)

23

46

69

9

18

27

3

6

9

(6,3)

12
8

51
2

2K 8K

26

52

78

16
K

64
K
25

6K

10

20

30

1M 4M 16
M

5

10

15 (12,4)

Chunk Size

L
at

en
cy

(u
s)

(c) TriEC

Fig. 6: Encoding Latency. Note different scales on Y axes. (k,m) (e.g., (3, 2)) and (k, l, r) (e.g., (4, 2, 2)) refer to EC configurations.

2680 v4 (2.4 GHz) CPUs, 128GB memory, and CentOS 7.4.
The cluster is interconnected with Mellanox ConnectX-5 IB-
EDR (100 Gbps) RNICs; thus, Mellanox OFED driver is also
installed on each node, the OFED we use for this paper is
modified based on v4.7�3.2.9.0 (to support INEC primitives).

For simplicity and clarity, we use the same methodology
as we use in Figure 1 to describe EC schemes, i.e., Layer-
1 and Layer-3 refer to the leftmost and rightmost layers,
respectively, and Layer-2 refers to the nodes in between. We
also utilize the ↵-� performance model in Section III-B to
explain observations.

A. Microbenchmark

We evaluate the performance of EC schemes implemented
with INEC primitives by a custom benchmark suite [30],
which includes a latency benchmark and a bandwidth bench-
mark. The latency benchmark consists of two parts, 1) en-
coding benchmark, which encodes a file filled with random
strings to generate coded blocks, and 2) decoding benchmark,
in which each EC scheme reconstructs the original file from
coded blocks while some blocks are erased according to
the configuration. Upon completion, the latency benchmark
reports the latencies of encoding/decoding operations. On the
other hand, the bandwidth benchmark is designed similarly as
the traditional window-based messaging benchmarks for net-
work bandwidth measurement. In the bandwidth benchmark,
bandwidth = (size of generated data)/(elapsed time). For
instance, the bandwidth of encoding a file with RS(k,m) is
(m ⇥ filesize)/(k ⇥ time), while the bandwidth of decoding
on survived coded blocks to recover an erased block with
RS(k,m) is filesize/(k ⇥ time). The objective of this band-
width benchmark is to determine the maximum sustained EC
rate that can be achieved.

Three widely-used EC configurations (i.e., (3, 2), (6, 3), and
(12, 4)) are chosen for EC schemes except for LRC. For the
case of LRC, the selected configurations are LRC(4, 2, 2),
LRC(6, 2, 2) and LRC(12, 2, 2), which are used in Microsoft
Azure [11]. We split involved chunk sizes into three groups
(i.e., 128B to 8KB, 16KB to 512KB, and 1MB to 16MB),

which are mapped to small, medium, and large chunk sizes,
separately, for illustrating performance characteristics.

12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K
12

8K
25

6K
51

2K 1M 2M 4M 8M 16
M

Chunk size

0

1000

2000

3000

B
an

d
w

id
th

(M
B

/s
)

RS baseline

RS proposed

LRC baseline

LRC proposed

TriEC baseline

TriEC proposed

Fig. 7: Encoding Bandwidth of RS(6,3), LRC(6,2,2), and

TriEC(6,3)

1) Encoding Latency and Bandwidth: There are two typ-
ical structures in organizing involved nodes for performing
encoding in the state-of-the-art EC schemes. One structure
adopted by RS and LRC arranges nodes to form a bipartite
graph, such that the structure can be split into two layers,
i.e., Layer-1 and Layer-2 of RS and LRC in Figure 1. Layer-
1 encodes on data chunks and then sends chunks to Layer-
2, while peers on Layer-2 receive chunks from Layer-1.
Our evaluations, as shown in Figures 6a and 6b, reveal that
the integration of coherent ec-send significantly reduces the
encoding latencies of EC schemes RS and LRC for small
and medium chunk sizes, but does not help much for large
chunk sizes. The observation can be explained by the ↵-
� model in Section III-B. As illustrated in Section III-B,
the proposed coherent in-network primitive does not reduce
DMA traffic of ec-send used in RS; therefore, ↵baseline and
↵INEC are theoretically close and similar. As a consequence,
latencies of the baseline and INEC are also similar when c is
large. The other structure to conduct encoding is a tripartite
graph based structure (i.e., the structure employed in TriEC),
in which Layer-1 sends out data chunks, Layer-2 encodes
on received data chunks and sends intermediate chunks to
Layer-3, and Layer-3 XORs on the intermediate chunks from
Layer-2 to generate parity chunks. Our integration applies

ec-send to Layer-1, recv-ec-send to Layer-2, and recv-xor
to Layer-3. Figure 6c depicts that INEC primitives deliver
significant performance benefits to TriEC for small, medium,
and even large chunk sizes, since the primitives utilized in
TriEC calculators reduce unnecessary DMA traffic as revealed
in Table I. We do not include PPR and ECPipe in this section
since they are specifically designed for decoding.

The results in Figures 6 cover three EC configurations of
each EC scheme with various chunk sizes. INEC improves
RS(3,2) by 29.29%–56.12% for small chunk sizes, 12.65%–
28.69% for medium chunk sizes, and performs on par with
the baseline for large chunk sizes. LRC(6,2,2) is improved
by INEC by up to 36.63% for small chunks, and up to
16.20% for medium chunks. In the meantime, the achieved
speedup for TriEC(12,4) is up to 1.81⇥, 3.36⇥, and 3.32⇥ for
small, medium, and large chunk sizes, respectively. Figure 7
illustrates that INEC is able to speed up the bandwidth of
RS(6,3) by up to 2.71⇥, LRC(6,2,2) by up to 2.63⇥, and
TriEC(6,3) by up to 5.87⇥. The performance fluctuation of
TriEC(6,3) (in Figure 7) in the range of 128KB to 2MB is
caused by the policy change of buffer management in our
RDMA runtime. Overall, TriEC with INEC primitives achieves
the best bandwidth performance, which demonstrates that the
tripartite graph structure is more friendly to take advantage of
coherent in-network primitives.

2) Decoding Latency and Bandwidth: Reducing decoding
latency is a significant focus in many prior studies [11], [16]–
[18]. One direction along this line is to decrease the number
of chunks for repairing. LRC introduces a local parity for
each EC group for fast recovery in case of single chunk
failure in the group. Nevertheless, LRC still maintains the
receive and decode pattern which RS holds. Thereby, recv-
ec is used to accelerate the receive and decode process in
both RS and LRC in our experiments. On the contrary,
most EC schemes (e.g., PPR, ECPipe, TriEC), which are
optimized for repairing, decompose decoding computation
into subproblems and schedule them to all involved nodes to
parallel computation and balance resource utilization. These
EC schemes have deep repair structures, and the involved
nodes can typically be categorized into three layers based on
their different functionality (i.e., Layer-1, Layer-2, and Layer-
3). INEC can be easily integrated into all three layers.

We evaluate the decoding latency for repairing a single
chunk. Figures 8a and 8b indicate that recv-ec performs
significantly better except for small chunk sizes. Performance
numbers show that recv-ec accelerates RS(12,4) by 25.57%–
54.01% for chunk sizes ranging from 16KB to 16MB, and
LRC(12,2,2) by 1.34⇥–2.36⇥ and 1.94⇥–2.27⇥ for medium
and large chunk sizes, respectively. We also use the ↵-�
performance model in Section III-B to explain why recv-ec
does not perform better for small chunks. If chunk size c is
small, � possibly dominates in the performance model. Since �
is a function of network latency, number of in-network states,
and amount of CPU involvement, these factors, especially in-
network states and CPU involvement, play an important role
to determine the coherent primitives’ performance benefits for

small chunk sizes. In the latency benchmark, the CPU usage
keeps relatively low in the case of small chunk sizes, and CPU
involvement is not a performance bottleneck of the incoherent
baseline; therefore, the extra in-network states introduced by
recv-ec degrades its latency performance. However, in practice,
there are other computation and communication workloads in
HPC clusters and multi-tenant data centers, which may incur
high CPU utilization and many context switches. Based on our
analysis, INEC has the potentials to outperform the incoherent
baseline for small chunks in these environments.

Figure 8c reveals that INEC accelerates PPR by up to
1.86⇥, 2.05⇥, and 1.75⇥ for configurations (3,2), (6,3), and
(12,4), respectively. In the evaluation of ECPipe, the internal
slice size is fixed to 32KB, such that decoding is carried out
in the units of 32KB or actual chunk size for chunk sizes less
than 32KB. The results in Figure 8d reveal that the use of
INEC speeds up ECPipe for all evaluated chunk sizes. For
chunk sizes from 128B to 16MB, INEC obtains 49.82%–
67.82% for (3,2), 49.47%–72.73% for (6,3), and 42.40%–
72.25% for (12,4), respectively, compared with the baseline
approach. Figure 8e illustrates the performance gains obtained
by TriEC with the proposed primitives. For (3,2), (6,3), and
(12,4), TriEC with INEC reduces latencies by up to 64.29%,
61.84%, and 59.11%, respectively. From Figure 8f, we can
see that INEC outperforms the baseline in terms of bandwidth
by up to 1.86⇥, 2.04⇥, 2.03⇥, 2.04⇥, and 2.94⇥ for RS,
LRC, PPR, ECPipe, and TriEC, respectively. LRC with INEC
gains the best bandwidth performance, because of the fact that
LRC, which has the assistance of local parities, requires fewer
chunks for reconstructing a single chunk. Thus, less EC com-
putation and communication in LRC incur higher bandwidth.
Another fact we would like to point out is that TriEC has
the ability to perform in-band recovery [18], thus upper-layer
applications could benefit more from TriEC than other EC
schemes, since they need to perform extra computation and
communication to conduct out-of-band recoveries.

B. Yahoo Cloud Serving Benchmark (YCSB)

In this section, we evaluate the performance of INEC-Cache
with YCSB. Each workload generated by YCSB consists of
a well-defined combination of operations (e.g., read, write),
data sizes, request distributions, etc. We modify YCSB to
support degraded read, i.e., read with data repair. In distributed
systems, failures are not always independent. In practice,
Weibull distribution with shape parameter of 0.7–0.8 provides
a close fit for predicting failures on HPC systems [32]–
[35]. Therefore, our modified YCSB generates degraded read
operations based on the Weibull distribution. The ratio of
degraded read to normal read is set to 1% for our evaluations,
unless explicitly stated otherwise. The request distribution
is Zipfian [36] distribution, which simulates the situation
that some portion of records is extremely popular for being
requested. We choose different workloads (i.e., Workload-
A (50% reads, 50% writes), Workload-B (95% reads, 5%
writes), and Workload-C (100% reads)), value sizes, and EC
configurations for INEC-Cache with varied EC schemes.

9

18

27

baseline proposed

2

4

6
⇥102

5

10

15
⇥103

(3,2)

10

20

30

3

6

9

8

16

24

(6,3)

12
8

51
2

2K 8K

15

30

45

16
K

64
K
25

6K

6

12

18

1M 4M 16
M

17

34

51 (12,4)

Chunk Size

L
at

en
cy

(u
s)

(a) Decoding Latency of RS

7

14

21

baseline proposed

12

24

36
⇥101

4

8

12
⇥103

(4,2,2)

7

14

21

17

34

51

5

10

15 (6,2,2)

12
8

51
2

2K 8K

10

20

30

16
K

64
K
25

6K

31

62

93

1M 4M 16
M

9

18

27 (12,2,2)

Chunk Size

L
at

en
cy

(u
s)

(b) Decoding Latency of LRC

9

18

27

baseline proposed

17

34

51
⇥101

5

10

15
⇥103

(3,2)

12

24

36

26

52

78

7

14

21

(6,3)

12
8

51
2

2K 8K

12

24

36

16
K

64
K
25

6K

35

70

105

1M 4M 16
M

10

20

30 (12,4)

Chunk Size

L
at

en
cy

(u
s)

(c) Decoding Latency of PPR

9

18

27

baseline proposed

3

6

9
⇥102

8

16

24
⇥103

(3,2)

11

22

33

4

8

12

11

22

33

(6,3)

12
8

51
2

2K 8K

12

24

36

16
K

64
K
25

6K

4

8

12

1M 4M 16
M

12

24

36 (12,4)

Chunk Size

L
at

en
cy

(u
s)

(d) Decoding Latency of ECPipe

10

20

30

baseline proposed

3

6

9
⇥102

6

12

18
⇥103

(3,2)

11

22

33

4

8

12

11

22

33

(6,3)

12
8

51
2

2K 8K

17

34

51

16
K

64
K
25

6K

7

14

21

1M 4M 16
M

22

44

66 (12,4)

Chunk Size

L
at

en
cy

(u
s)

(e) Decoding Latency of TriEC

12
8

51
2

2K 8K 32
K

12
8K

51
2K 2M 8M

Chunk size

0

500

1000

1500

2000

2500

B
an

d
w

id
th

(M
B

/s
)

RS baseline

RS proposed

LRC baseline

LRC proposed

PPR baseline

PPR proposed

ECPipe baseline

ECPipe proposed

TriEC baseline

TriEC proposed

(f) Decoding Bandwidth

Fig. 8: Decoding Latency and Bandwidth. Note different scales on Y axes. (k,m) (e.g., (3, 2)) and (k, l, r) (e.g., (4, 2, 2)) refer to
EC configurations. Decoding bandwidth benchmarks are conducted with RS(6,3), LRC(6,2,2), PPR(6,3), ECPipe(6,3), and TriEC(6,3).

Write

A

Degraded Read

Agent Data Cache
Parity Cache Node Failure

B

(a) RS DEGs

0 200000 400000

Operation ID

0

129

258

387

516

L
at

en
cy

(u
s)

50 95 99

Percentile

0

119

238

357

476

baseline
proposed

baseline
proposed

(b) ec-send of Node A

0 2000 4000

Operation ID

0

62

124

186

248

310

L
at

en
cy

(u
s)

50 95 99

Percentile

0

62

124

186

248

310

baseline
proposed

baseline
proposed

(c) recv-ec of Node B

Fig. 9: INEC-Cache with RS(3,2). YCSB Workload-A with 4KB value size

Write Degraded Read

Agent Data Cache
Global Parity
Node Failure

A B

Local Parity

(a) LRC DEGs

0 200000 400000

Operation ID

0

147

294

441

588

L
at

en
cy

(u
s)

50 95 99

Percentile

0

122

244

366

488

baseline
proposed

baseline
proposed

(b) ec-send of Node A

0 2000 4000

Operation ID

0

130

260

390

L
at

en
cy

(u
s)

50 95 99

Percentile

0

122

244

366

baseline
proposed

baseline
proposed

(c) recv-ec of Node B

Fig. 10: INEC-Cache with LRC(12,2,2). YCSB Workload-A with 32KB value size

1) INEC-Cache with RS(3,2): Figure 9a shows the encod-
ing and decoding DEGs constructed for write and degraded
read. Node A in the encoding DEG is applied with the ec-
send primitive, and node B in the decoding DEG employs
the recv-ec primitive. The evaluation is conducted with YCSB
Workload-A, in which value size is fixed to 4KB. Figure 9b re-
veals ec-send’s latency distribution and three major percentile
latencies (i.e., 50th, 95th, and 99th percentile latencies). The
distribution clearly illustrates that ec-send performs better
than the baseline, since the use of ec-send reduces CPU
involvement and context switches, and alleviates compute
intensity. As a result, ec-send cuts down 50th, 95th, and
99th percentile latencies by 44.00%, 36.82%, and 32.99%,
respectively. Figure 9c depicts the improvement gained by
recv-ec. Since chunk size is relatively small, recv-ec does not
deliver as much improvement as ec-send. In this evaluation,
recv-ec speeds up 50th, 95th, and 99th percentile latencies by
1.20⇥, 1.09⇥, and 1.05⇥, respectively.

2) INEC-Cache with LRC(12,2,2): The evaluation is per-
formed with YCSB Workload-A with the value size of 32KB.
The constructed encoding and decoding DEGs for LRC are
shown in Figure 10a. Similar to the integration of RS, ec-send
is applied to node A, and recv-ec is used by node B. The
latency distributions in Figures 10b and 10c demonstrate that
using coherent primitives can alleviate the performance fluc-
tuation introduced by frequent context switches and thereby
provide relatively stable latency performance. Overall, ec-send
speeds up 50th percentile latency by 1.27⇥, 95th percentile
latency by 1.26⇥, and 99th percentile latency by 1.28⇥, while
recv-ec reduces 50th, 95th, and 99th percentile latencies by
12.19%, 24.64% and 31.48%, respectively.

3) INEC-Cache with PPR(12,4): PPR is an advanced EC
scheme designed for chunk repairing but without encoding op-
timizations, so we only evaluate PPR’s decoding performance
in this benchmark. We evaluate INEC-Cache with PPR(12,4)
on YCSB Workload-C, and the value size is fixed to 64KB.
As illustrated in Figure 11a, the repairing DEG is a tree-like
structure, and we apply ec-send to node A, recv-ec-send to
node B, and recv-xor to node C. Figure 11b reveals that,
compared with the baseline, ec-send delivers better and more
stable latency performance. It achieves 77.16%, 66.79%, and
62.40% performance improvement for 50th, 95th, and 99th

percentile latencies, respectively. Figure 11c depicts that, even
in the most complicated place (i.e., node B), recv-ec-send
is still able to offer significant speedup. Compared with the
baseline approach, 50th, 95th, and 99th percentile latencies
are cut down by 69.03%, 65.32%, and 58.73%, respectively.
Node C in the decoding DEG finally performs a recv-xor
to generate the reconstructed chunk. Since it is the end of
the entire reduction tree, both the baseline and the proposed
approaches encounter some significant outliers and thus incur
high 99th percentile latencies as shown in Figure 11d. Our
experiments show that recv-xor speeds up 50th, 95th, and 99th

percentile latencies by 2.05⇥, 1.86⇥, and 1.17⇥, respectively.
4) INEC-Cache with ECPipe(6,3): ECPipe is specifically

designed for chunk reconstruction as well, so we use INEC-

accelerated RS(6,3) for performing encoding operations and
ECPipe(6,3) with INEC for decoding. In this evaluation, the
internal slice size of ECPipe is set to 1KB, and we use
YCSB Workload-B with 16KB value size. In order to study
different primitives involved in ECPipe, we select three nodes
along the pipeline, i.e., nodes A, B, and C in Figure 12a.
As shown in Figure 12b, the ec-send primitive of node A

outperforms the baseline by 5.47⇥, 4.25⇥, and 3.54⇥ for
50th, 95th, and 99th percentile latencies, respectively. The
recv-ec-send of node B, as in Figure 12c, gains 48.47% for
50th percentile latency, 50.51% for 95th percentile latency, and
47.86% for 99th percentile latency. Node C is the end node
of ECPipe and it only receives slices from the downstream
node. Figure 12d demonstrates that node C with coherent in-
network primitives outperforms the baseline dramatically as
well (i.e., by 68.73%, 69.29%, and 68.45% for 50th, 95th,
and 99th percentile latencies, respectively).

5) INEC-Cache with TriEC(3,2): The evaluation of TriEC
is carried out with YCSB Workload-A with the value size
of 8KB. Note that each degraded read needs to repair two
chunks in this experiment. As illustrated in Figure 13a, we
pick up three nodes to clarify INEC’s benefits in accelerating
encoding and decoding processes. Figure 13b shows that node
A, as one of the major computing nodes in encoding process,
obtains low and stable latencies by the apply of recv-ec-
send. The results reveal that recv-ec-send performs 5.87⇥,
4.21⇥, and 3.60⇥ better than the baseline for 50th, 95th,
and 99th percentile latencies, respectively. Node B in the
encoding structure receives intermediate chunks from Layer-2
and XORs on these intermediate chunks to construct parity
chunks. As illustrated in Figure 13c, the employment of
recv-xor gains 39.59%, 31.96%, and 31.62% performance
improvement for 50th, 95th, and 99th percentile latencies,
respectively. Figure 13d represents that, by leveraging the recv-
xor-send primitive, node C (i.e., the node to be reconstructed)
reduces 50th percentile latency by 81.27%, 95th percentile
latency by 50.17%, and 99th percentile latency by 47.19%.
As we can see, the proposed coherent in-network primitives
significantly accelerate reconstructions.

6) Overall Performance Improvement of INEC-Cache: In
this section, we evaluate the overall performance of INEC-
Cache with comparable EC configurations, i.e., RS(6,3),
LRC(6,2,2), PPR(6,3), ECPipe(6,3), and TriEC(6,3). The cho-
sen YCSB workloads are Workloads A, B, and C, in which
read requests are all degraded reads (since normal reads do not
use INEC primitives), and value size is fixed to about 8KB,
which is a representative value size in Facebook’s memcached
cluster [37]. All the experiments are conducted with 144
YCSB clients and 9 INEC-Cache Mem Stripes for RS, PPR,
ECPipe, and TriEC, and 160 YCSB clients and 10 INEC-
Cache Mem Stripes for LRC. Since PPR and ECPipe only
support decoding, we use RS encoding together with PPR and
ECPipe to complete the experiments in this section. Figure 14
presents the improvement ratios with respect to the baseline.

For RS(6,3) and LRC(6,2,2), since the chunk size in this
evaluation falls into the range of small chunk sizes, INEC

Degraded Read

Agent Data Cache
Parity Cache Node Failure

C

B

A

N
ot

 P
ar

ti
ci

pa
ti
ng

(a) PPR Repairing DEG

0 5000

Operation ID

0

64

128

192

256

L
at

en
cy

(u
s)

50 95 99

Percentile

0

52

104

156

208

baseline
proposed

baseline
proposed

(b) ec-send of Node A

0 5000

Operation ID

0

193

386

579

772

L
at

en
cy

(u
s)

50 95 99

Percentile

0

189

378

567

756

baseline
proposed

baseline
proposed

(c) recv-ec-send of Node B

0 5000

Operation ID

0

552

1104

1656

L
at

en
cy

(u
s)

50 95 99

Percentile

0

554

1108

1662

baseline
proposed

baseline
proposed

(d) recv-xor of Node C

Fig. 11: INEC-Cache with PPR(12,4). YCSB Workload-C with 64KB value size

C

A

Degraded Read

Agent Data Cache
Parity Cache Node Failure

B

(a) ECPipe Repairing DEG

0 10000

Operation ID

0

93

186

279

372

L
at

en
cy

(u
s)

50 95 99

Percentile

0

65

130

195

260

baseline
proposed

baseline
proposed

(b) ec-send of Node A

0 10000

Operation ID

0

154

308

462

616

L
at

en
cy

(u
s)

50 95 99

Percentile

0

132

264

396

528

baseline
proposed

baseline
proposed

(c) recv-ec-send of Node B

0 10000

Operation ID

0

444

888

1332

1776

L
at

en
cy

(u
s)

50 95 99

Percentile

0

310

620

930

1240

baseline
proposed

baseline
proposed

(d) recv of Node C

Fig. 12: INEC-Cache with ECPipe(6,3). YCSB Workload-B with 16KB value size

Write

A

Degraded Read

Agent Data Cache
Parity Cache Node Failure

C

B

(a) TriEC DEGs

0 500000

Operation ID

0

48

96

144

192

L
at

en
cy

(u
s)

50 95 99

Percentile

0

42

84

126

168

baseline
proposed

baseline
proposed

(b) recv-ec-send of Node A

0 500000

Operation ID

0

115

230

345

L
at

en
cy

(u
s)

50 95 99

Percentile

0

103

206

309

baseline
proposed

baseline
proposed

(c) recv-xor of Node B

0 5000

Operation ID

0

125

250

375

500

L
at

en
cy

(u
s)

50 95 99

Percentile

0

109

218

327

436

baseline
proposed

baseline
proposed

(d) recv-xor-send of Node C

Fig. 13: INEC-Cache with TriEC(3,2). YCSB Workload-A with 8KB value size

accelerates encoding operations but does not help much in
decoding operations. Therefore, among Workloads A, B, and
C, RS and LRC with INEC achieve the most improvement
with Workload-A, which is a write-heavy workload compared
with the other two. As shown in Figure 14, RS with INEC
outperforms the baseline by 14.36%, 12.85%, and 12.48% for
throughput, write latency, and degraded read latency, respec-
tively, with Workload-A. On the other hand, LRC with INEC
on Workload-A improves overall throughput by 16.99%, write
latency by 14.68%, and degraded read latency by 14.40%.

Our microbenchmarks in Sections IV-A1 and IV-A2 illus-
trate that the decoding performance gains of INEC-based PPR,
ECPipe, and TriEC are larger than their encoding performance
gains for small chunks. Therefore, INEC-based PPR, ECPipe,
and TriEC perform better with read-dominated workloads (i.e.,
Workloads B and C) than with write-heavy workloads such as

Workload-A. As we can see from Figure 14, INEC-based PPR
obtains improvement by up to 68.33% for throughput, 36.33%
for write latency, and 40.60% for degraded read latency.
ECPipe with INEC speeds up throughput performance by up
to 99.57%, write latency by up to 47.30%, and degraded read
latency by up to 49.92%. INEC-accelerated TriEC improves
throughput, write latency, and degrade read latency by up to
92.26%, 42.91%, and 48.04%, respectively.

To summary, compared with the incoherent baseline, INEC-
Cache with varied INEC-based EC schemes presents an av-
erage performance boost of up to 57% for throughput with
read-dominated workloads and an average speedup of 28%
for throughput with write-heavy workloads. The evaluation
results demonstrate that the proposed coherent in-network
primitives (i.e., INEC), are able to deliver high-performance
EC computation to real-world applications.

Workload-A Workload-B Workload-C
0%

20%

40%

60%

80%

100%

R
at

io
w

.r
.t
.

B
as

el
in

e

RS

LRC

PPR

ECPipe

TriEC

(a) YCSB Throughput
Workload-A Workload-B

0%

10%

20%

30%

40%

50%

R
at

io
w

.r
.t
.

B
as

el
in

e

RS

LRC

PPR

ECPipe

TriEC

(b) YCSB Write Latency
Workload-A Workload-B Workload-C

0%

10%

20%

30%

40%

50%

R
at

io
w

.r
.t
.

B
as

el
in

e

RS

LRC

PPR

ECPipe

TriEC

(c) YCSB Degraded Read Latency

Fig. 14: Overall Performance Improvement of INEC-Cache.

C. Discussion

Several insights from these experiments are worthwhile to
discuss further. For small and extremely large chunk sizes in
some experiments, offloading computation and communication
in the same post (i.e., INEC) performs on par or a little worse
than offloading them separately (i.e., baseline), such that a
hybrid design utilizing both INEC and incoherent primitives
may deliver the optimal performance by two reasons: 1) INEC
primitives are compatible with the conventional incoherent
primitives, so a hybrid design is feasible, and 2) INEC needs
to put some RDMA WAITs on RNICs to construct coherent
in-network primitives, while maintaining a large amount of
RDMA WAITs may adversely impact on-NIC resource man-
agement and thus incur performance degradation. A hybrid
design can reduce the number of states to be maintained on
SmartNICs and make proper use of available resources.

Some experiments also reveal that EC calculation on ex-
tremely large chunk sizes might exhaust the computing power
of RNICs, which would incur performance loss in computation
and communication for both INEC and incoherent primitives.
This insight indicates that we would better choose a refined
chunk size for EC offload based storage systems to fully take
advantage of the EC offload capability on SmartNICs. Overall,
our experiment results clearly show that the benefits of INEC
can be attained in most cases. These insights observed in the
experiments validate our analysis in Section III-B.

V. RELATED WORK

The capability of delivering higher data reliability with
lower storage overhead [38] makes EC be a promising alter-
native to replication. Many existing storage systems [5]–[8],
[10], [12], [13] have adopted EC in their implementations to
replace or to be a complement to replication. A rich body
of work focuses on accelerating EC to make it viable for
large scale storage systems. Local Reconstruction Codes [11]
and Locally Repairable Codes [39] facilitate more efficient
recovery scenarios by storing additional local parities, which
can reduce the number of chunks to be read for data recon-
struction. PPR [16], ECPipe [17], and TriEC [18] decompose
EC calculation into sub calculation and schedule them to
multiple nodes to achieve better parallelism, overlapping, and
balanced resource utilization. OpenEC [40] and Fast Erasure

Coding [41] have proposed frameworks to manage efficiently
and optimize EC systematically. On the other hand, the
increased focus on EC for storage resilience has motivated
several works to apply EC for Big Data and Cloud storage
systems as well as key-value store systems (e.g., [29], [32],
[42]–[53]).

The emergence of next-generation HPC or data center
hardware platforms has inspired several prior studies to design
network-based resilient schemes. HyperLoop [23] offloads
replication transactions to RDMA NICs to dramatically reduce
the 99th percentile latency of a multi-tenant non-volatile
memory based storage systems. TriEC [18] has proposed a
new EC NIC offload paradigm which overcomes some major
limitations of current-generation EC NIC offload schemes on
modern SmartNICs. This emerging focus on network-based
resilient schemes serves as a motivation for this paper.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a set of coherent in-network
EC primitives called INEC, which can leverage the event-
driven work request triggering mechanism available on modern
SmartNICs to make EC calculation and networking function-
ality to be coherent. In the meantime, we also proposed a
performance model (i.e., ↵-� model) to analyze the perfor-
mance gains of INEC primitives in multiple state-of-the-art EC
schemes. Our analyses reveal that INEC enables state-of-the-
art EC schemes to take full advantage of the EC offload capa-
bility on modern SmartNICs. The performance gains of INEC
are validated with five state-of-the-art EC schemes. YCSB-
based evaluations on the key-value store co-designed with
INEC (i.e., INEC-Cache) show that INEC significantly reduces
percentile latencies and improves the end-to-end throughput,
write, and degraded read performance by up to 99.57%,
47.30%, and 49.55%, respectively. The evaluations validate
that the integration of INEC primitives into state-of-the-art
EC schemes is feasible and delivers optimized performance.
Cross comparisons based on the evaluation results illustrate
that INEC-accelerated TriEC significantly outperforms other
EC schemes in terms of encoding bandwidth, while LRC with
INEC attains the best decoding bandwidth performance. In
the future, we plan to propose designs for INEC primitives on
more types of commodity SmartNICs and examine the benefits
of INEC with more applications.

REFERENCES

[1] F. Herold, S. Breuner, and J. Heichler, “An introduction to BeeGFS,”
https://www.beegfs.io/docs/whitepapers/Introduction to BeeGFS by
ThinkParQ.pdf, 2014 (Accessed on 2020-08-31).

[2] “GlusterFS,” https://www.gluster.org/, 2020 (Accessed on 2020-08-31).
[3] “OrangeFS,” http://www.orangefs.org/, 2020 (Accessed on 2020-08-31).
[4] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite

Fields,” Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, pp. 300–304, 1960.

[5] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly, “The
Quantcast File System,” Proceedings of the VLDB Endowment, no. 11,
pp. 1092–1101, 2013.

[6] Ceph, “Erasure code,” https://docs.ceph.com/docs/master/rados/
operations/erasure-code/, 2016 (Accessed on 2020-04-17).

[7] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui, and J. Cong,
“Atlas: Baidu’s key-value storage system for cloud data,” in 2015 31st
Symposium on Mass Storage Systems and Technologies (MSST), 2015,
pp. 1–14.

[8] A. Hadoop, “Apache Hadoop 3.0.0,” http://hadoop.apache.org/docs/r3.
0.0/, 2017 (Accessed on 2020-04-17).

[9] Facebook, “Facebook’s Erasure Coded Hadoop Distributed File System
(HDFS-RAID),” https://github.com/facebookarchive/hadoop-20, 2010
(Accessed on 2020-04-17).

[10] Backblaze, “Backblaze Reed-Solomon,” https://www.backblaze.com/
open-source-reed-solomon.html, 2015 (Accessed on 2020-04-17).

[11] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
S. Yekhanin et al., “Erasure Coding in Windows Azure Storage,” in
Usenix Annual Technical Conference. Boston, MA, 2012, pp. 15–26.

[12] Google, “Colossus: Successor to the Google File System (GFS),”
https://www.systutorials.com/3202/colossus-successor-to-google-file-
system-gfs/, 2012 (Accessed on 2020-04-17).

[13] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang et al., “f4: Facebook’s Warm BLOB
Storage System,” in Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation. USENIX Association,
2014, pp. 383–398.

[14] Lustre, “File Level Redundancy Solution Architecture,” http://wiki.
lustre.org/File Level Redundancy Solution Architecture, 2019 (Ac-
cessed on 2020-08-28).

[15] “Introduction to IBM Spectrum Scale Erasure Code Edition,”
https://www.ibm.com/support/knowledgecenter/STXKQY ECE 5.
0.5/com.ibm.spectrum.scale.ece.v5r05.doc/b1lece intro.htm, 2020
(Accessed on 2020-08-31).

[16] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi, “Partial-Parallel-Repair
(PPR): A Distributed Technique for Repairing Erasure Coded Storage,”
in Proceedings of the Eleventh European Conference on Computer
Systems. ACM, 2016, p. 30.

[17] R. Li, X. Li, P. P. Lee, and Q. Huang, “Repair Pipelining for Erasure-
coded Storage,” in Proceedings of the 2017 USENIX Annual Technical
Conference (USENIX ATC’17), 2017, pp. 567–579.

[18] H. Shi and X. Lu, “TriEC: Tripartite Graph Based Erasure Coding
NIC Offload,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’19.
New York, NY, USA: Association for Computing Machinery, 2019.

[19] Intel, “Intel Intelligent Storage Acceleration Library (Intel ISA-
L),” https://software.intel.com/en-us/storage/ISA-L, 2016 (Accessed on
2020-04-17).

[20] M. Curry, A. Skjellum, H. Lee Ward, and R. Brightwell, “Gibraltar:
A Reed-Solomon Coding Library for Storage Applications on Pro-
grammable Graphics Processors,” in Concurrency and Computation:
Practice and Experience, vol. 23, 12 2011, pp. 2477–2495.

[21] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ram-
chandran, “A Solution to the Network Challenges of Data Recovery in
Erasure-coded Distributed Storage Systems: A Study on the Facebook
Warehouse Cluster.” in HotStorage, 2013.

[22] Mellanox, “Understanding Erasure Coding Offload,” https://community.
mellanox.com/docs/DOC-2414, 2018 (Accessed on 2020-04-17).

[23] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu, J. Padhye,
S. Raindel, S. Swanson, V. Sekar, and S. Seshan, “Hyperloop: Group-
Based NIC-Offloading to Accelerate Replicated Transactions in Multi-
Tenant Storage Systems,” in Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, ser. SIGCOMM

’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 297–312.

[24] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia, “A Remote
Direct Memory Access Protocol Specification,” RFC 5040, October,
Tech. Rep., 2007.

[25] Mellanox, “CORE-Direct,” https://www.mellanox.com/related-
docs/whitepapers/TB CORE-Direct.pdf, 2010 (Accessed on 2020-
04-17).

[26] Mellanox, “Cross Channel,” https://docs.mellanox.com/display/
rdmacore50/Cross+Channel, 2010 (Accessed on 2020-04-17).

[27] D. R. K. Ports and J. Nelson, “When Should The Network Be The
Computer?” in Proceedings of the Workshop on Hot Topics in Operating
Systems, ser. HotOS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 209–215.

[28] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design Guidelines
for High Performance RDMA Systems,” in Proceedings of the 2016
USENIX Conference on Usenix Annual Technical Conference, ser.
USENIX ATC ’16. USA: USENIX Association, 2016, p. 437–450.

[29] H. Zhang, M. Dong, and H. Chen, “Efficient and Available In-memory
KV-Store with Hybrid Erasure Coding and Replication,” in 14th USENIX
Conference on File and Storage Technologies (FAST 16). Santa Clara,
CA: USENIX Association, Feb. 2016, pp. 167–180.

[30] H. Shi, X. Lu, and D. K. Panda, “EC-Bench: Benchmarking Onload
and Offload Erasure Coders on Modern Hardware Architectures,” in In-
ternational Symposium on Benchmarking, Measuring and Optimization.
Springer, 2018, pp. 215–230.

[31] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proceedings
of the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
143–154.

[32] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in Globally Distributed Storage
Systems,” in Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’10. USA: USENIX
Association, 2010, p. 61–74.

[33] T. Heath, R. P. Martin, and T. D. Nguyen, “Improving Cluster Avail-
ability Using Workstation Validation,” in Proceedings of the 2002 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, ser. SIGMETRICS ’02. New York, NY, USA:
Association for Computing Machinery, 2002, p. 217–227.

[34] T.-T. Lin and D. P. Siewiorek, “Error Log Analysis: Statistical Modeling
and Heuristic Trend Analysis,” IEEE Transactions on Reliability, vol. 39,
no. 4, pp. 419–432, 1990.

[35] B. Schroeder and G. A. Gibson, “A Large-Scale Study of Failures in
High-Performance Computing Systems,” IEEE Transactions on Depend-
able and Secure Computing, vol. 7, no. 4, pp. 337–350, 2010.

[36] L. Egghe, “Zipfian and Lotkaian Continuous Concentration Theory,”
Journal of the American Society for Information Science and Technol-
ogy, vol. 56, no. 9, pp. 935–945, 2005.

[37] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling Memcache
at Facebook,” in Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), 2013, pp.
385–398.

[38] H. Weatherspoon and J. D. Kubiatowicz, “Erasure Coding vs. Replica-
tion: A Quantitative Comparison,” in International Workshop on Peer-
to-Peer Systems. Springer, 2002, pp. 328–337.

[39] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing Elephants: Novel
Erasure Codes for Big Data,” Proceedings of the VLDB Endowment,
vol. 6, no. 5, pp. 325–336, Mar. 2013.

[40] X. Li, R. Li, P. P. Lee, and Y. Hu, “OpenEC: Toward Unified and Con-
figurable Erasure Coding Management in Distributed Storage Systems,”
in 17th USENIX Conference on File and Storage Technologies (FAST
19), 2019, pp. 331–344.

[41] T. Zhou and C. Tian, “Fast Erasure Coding for Data Storage: A
Comprehensive Study of the Acceleration Techniques,” in 17th USENIX
Conference on File and Storage Technologies (FAST 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 317–329.

[42] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A Tale of Two Erasure
Codes in HDFS,” in 13th USENIX Conference on File and Storage
Technologies (FAST 15). Santa Clara, CA: USENIX Association, 2015,
pp. 213–226.

[43] J. C. Chan, Q. Ding, P. P. Lee, and H. H. Chan, “Parity Logging
with Reserved Space: Towards Efficient Updates and Recovery in
Erasure-coded Clustered Storage,” in Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST 14), 2014, pp. 163–
176.

[44] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.
Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient Replica Main-
tenance for Distributed Storage Systems,” in Proceedings of the 3rd
Conference on Networked Systems Design and Implementation - Volume
3, ser. NSDI’06. USA: USENIX Association, 2006, p. 4.

[45] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ram-
chandran, “A ”Hitchhiker’s” Guide to Fast and Efficient Data Recon-
struction in Erasure-coded Data Centers,” Proceedings of the 2014 ACM
Conference on SIGCOMM, vol. 44, no. 4, pp. 331–342, Aug. 2014.

[46] K. M. Greenan, X. Li, and J. J. Wylie, “Flat XOR-based Erasure Codes
in Storage Systems: Constructions, Efficient Recovery, and Tradeoffs,”
in Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on. IEEE, 2010, pp. 1–14.

[47] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads,” in Proceedings of the 10th USENIX Conference
on File and Storage Technologies, ser. FAST’12. USA: USENIX
Association, 2012, p. 20.

[48] K. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and K. Ramchandran,
“EC-Cache: Load-Balanced, Low-Latency Cluster Caching with Online
Erasure Coding,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association, 2016.

[49] P. Viotti, D. Dobre, and M. Vukolić, “Hybris: Robust hybrid cloud
storage,” ACM Trans. Storage, vol. 13, no. 3, Sep. 2017.

[50] S. Li, Q. Zhang, Z. Yang, and Y. Dai, “BCStore: Bandwidth-Efficient
In-memory KV-store with Batch Coding,” in International Conference
on Massive Storage Systems and Technology, 2017.

[51] K. Taranov, G. Alonso, and T. Hoefler, “Fast and strongly-consistent
per-item resilience in key-value stores,” in Proceedings of the Thirteenth
EuroSys Conference, ser. EuroSys ’18. New York, NY, USA: Associ-
ation for Computing Machinery, 2018.

[52] D. Shankar, X. Lu, and D. K. Panda, “High-Performance and Resilient
Key-Value Store with Online Erasure Coding for Big Data Workloads,”
in Proceedings of the 37th IEEE International Conference on Distributed
Computing Systems (ICDCS), June 2017.

[53] H. Shi, X. Lu, D. Shankar, and D. K. Panda, “UMR-EC: A unified
and multi-rail erasure coding library for high-performance distributed
storage systems,” in Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing, HPDC 2019,
Phoenix, AZ, USA, June 22-29, 2019. ACM, 2019, pp. 219–230.

