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Abstract—IBM’s POWER processor has been advocated as the
high-performance architecture designed for processing Big Data
workloads. With the collaborations through the OpenPOWER
Foundation, more and more innovations for POWER architecture
are emerging to solve Big Data challenges. For example, with the
cooperation between IBM and Mellanox, the latest generation
of Remote Direct Memory Access (RDMA) capable InfiniBand
network can deliver tremendous performance on POWER pro-
cessors. On the other hand, many RDMA-based designs and
optimizations recently have been proposed in the community
for accelerating big data processing systems (such as Apache
Hadoop and Spark). However, these studies mostly focus on
achieving higher performance over Intel Xeon or other x86
architectures. As OpenPOWER systems are getting momentum,
we set out to answer the question how much can the RDMA-based
communication runtime benefit Big Data processing middleware
running over OpenPOWER systems as compared to the default
TCP/IP-based designs. To answer this question, this paper first
presents an extensive performance characterization on RDMA-
based Hadoop RPC engine over OpenPOWER system. We further
propose new designs to enable efficient CPU affinity policies and
architecture-aware tuning in the RDMA-based communication
engine for Hadoop and Spark. With these various accelerations,
our performance evaluation shows that our proposed designs can
achieve up to 2.73X performance improvement for Hadoop RPC
benchmark as compared to default Hadoop running with IP-over-
IB protocol on OpenPOWER systems. In addition, our proposed
design can gain up to 29.37% performance improvement for
Hadoop and Spark workloads as compared to the default RDMA
designs running on an OpenPOWER cluster.

I. INTRODUCTION

In 2013, IBM and other companies launched the Open-
POWER Foundation [13], which is an open technical member-
ship organization that aims to customize POWER CPU proces-
sors and system platforms for optimization and innovation in
advanced hardware technologies and software co-designs. IBM
POWER processor (e.g., POWER8) has been advocated as
the high-performance architecture designed for processing Big
Data workloads. The OpenPOWER Foundation has established
that they will focus on the following four technical areas:
(1) Machine Learning/AI, (2) Database/Analytics, (3) Cloud,
and, (4) Containers; as a part of their 2017 goals. To deliver
high-performance for these various workloads, OpenPOWER
Foundation members have worked together closely to push
more and more innovations to OpenPOWER-enabled systems.
For example, with the collaboration between IBM and Mel-
lanox, the latest generation of Remote Direct Memory Access
(RDMA) capable InfiniBand network is being used to deliver
high-performance communication on OpenPOWER clusters.
With all of these developments, OpenPOWER systems are

This research is supported in part by National Science Foundation grants
#IIS-1447804, #ACI-1664137, #IIS-1636846, and #CNS-1513120.

quickly becoming the choice of processing power for High-
End Computing and High-Performance Computing (HPC)
clusters.

With the increase in the amount of valuable data being
generated at various businesses and organizations, Big Data
combined with HPC is creating new solutions area of biomed-
ical research, business analytics and security, smart energy
grids, manufacturing, and many more. With the convergence of
HPC and Big Data Analytics, a new type of workload called
High-Performance Data Analytics (HPDA) is becoming the
next game-changing business opportunity. According to IDC’s
report, HPDA use cases are rapidly emerging in the HPC
market which is expected to reach $31 billion by 2019 [18].
In order to handle HPDA workloads efficiently, many novel
accelerations and designs have been proposed to improve the
performance of current-generation Big Data middleware. Re-
mote Direct Memory Access (RDMA) based communication
stacks have become a research hotspot in the field of High-
Performance Big Data analytics, for accelerating Big Data pro-
cessing systems such as Hadoop [28, 33, 44], Spark [34, 35],
HBase [25, 36], and Key-Value Stores [23, 30, 46].

A. Motivation

Table I summarizes recently state-of-the-art research in
literature pertaining to Big Data middleware for HPC clusters.
We broadly categorize them based on the following three as-
pects: (1) architecture, (2) network, and, (3) whether there are
native RDMA-based designs proposed for these environments.
As we can see, most of these studies are focused on achieving
high-performance on Intel Xeon or other x86 architectures
with RDMA-capable networks (such as InfiniBand or RoCE)
or high-speed Ethernet. Additionally, some recent studies [1,
12, 15, 29, 42] have been presented on running Big Data
workloads over OpenPOWER systems with InfiniBand EDR or
10/40/100 GigE networks. However, these designs are typically
using TCP/IP, IP-over-InfiniBand (IPoIB), or RSockets [24]
protocols, which are not based on native RDMA designs.
Table I clearly shows that the Big Data community still needs
more research effort on POWER architecture to study the
performance characteristics and propose more accelerations for
native RDMA-based Big Data processing middleware.

As OpenPOWER systems are getting momentum, we set
out to answer the question: How much can the RDMA-
based communication runtime benefit Big Data processing
middleware running over OpenPOWER architecture as
compared to the default TCP/IP-based designs? To answer
this question, it is therefore vital to address the following
challenges:

• What are the performance characteristics of repre-
sentative RDMA-based Big Data processing middle-
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ware running over OpenPOWER systems with modern
POWER processors and InfiniBand networks?

• Can RDMA-based Big Data processing middleware
that were originally designed for the x86 architecture
demonstrate similar performance benefits on Open-
POWER systems, as compared to other communica-
tion protocols?

• Based on these studies, can we propose new ac-
celerations for Big Data processing middleware on
OpenPOWER systems to attain even better benefits
as compared to the default RDMA-based designs?

• How much can overall performance benefits be
gained in typical Big Data application workloads on
OpenPOWER systems by leveraging these optimized
RDMA-based designs?

TABLE I: Comparison with Related Work

Work Architecture Network
Native RDMA
based Design

[6, 28, 34, 35, 44, 46, 49] x86 InfiniBand/RoCE Yes
[5, 41] x86 10/40/100 GigE No
[1, 42] POWER InfiniBand No
[12, 15, 29] POWER 10/40/100 GigE No
This paper POWER InfiniBand Yes

B. Contribution

To address all of these challenges, this paper first presents
an extensive performance characterization of RDMA-based
Hadoop RPC engine over an OpenPOWER system. Since
Hadoop RPC is the most fundamental communication mech-
anism in Hadoop ecosystem and represents communications
conforming to a wide range of distributed operations in Big
Data middleware, we believe that Hadoop RPC is a good
starting point of investigating the performance characteristics
of RDMA-based communication engine on OpenPOWER sys-
tems. Through these performance characterizations, we find
that the RDMA-based communication engine can deliver the
similar higher performance benefits observed on x86 clusters
as compared to the default design running over the IPoIB
protocol, on OpenPOWER systems. In the meantime, we ob-
serve the performance variations for both RDMA and IPoIB on
OpenPOWER platforms. However, the same designs running
over Intel Xeon x86 platforms are showing more stable perfor-
mance numbers. To further investigate the reasons behind these
variations in performance, we analyze how CPU affinity and
JDK versions impact performance on OpenPOWER systems.

Based on these studies and in-depth analysis, we pro-
pose new designs to enable efficient CPU affinity policies
and architecture-aware tuning in RDMA-based communication
engines for Hadoop and Spark like Big Data processing
frameworks. With these various accelerations, our proposed
designs can achieve up to 2.73X performance improvement for
Hadoop RPC benchmark as compared to default Hadoop run-
ning with IP-over-IB protocol and up to 29.37% performance
improvement for Hadoop and Spark workloads as compared
to the default RDMA designs running on an OpenPOWER
cluster. In addition, our proposed designs enable us to attain
stable performance gains by employing OpenPOWER clus-
ters for Big Data processing workloads. To the best of our

knowledge, this is the first paper to discuss how to achieve
higher and stable performance on OpenPOWER systems with
native RDMA-based designs for popular Big Data processing
middleware such as Hadoop and Spark.

The rest of the paper is organized as follows. Section II
presents the background of POWER architecture, InfiniBand,
and RDMA-based designs for Apache Hadoop and Spark. We
further discuss the performance characterizations in Section III.
Section IV presents our proposed design. Section V describes
our detailed evaluation. Section VI discusses related work. We
conclude in Section VII with future work.

II. BACKGROUND

In this section, we present a brief background on POWER
architecture, InfiniBand, and RDMA-based designs for Apache
Hadoop and Spark.

A. Overview of POWER Architecture

IBM’s POWER architecture [31] is considered the cor-
nerstone of innovation of the OpenPOWER Foundation [13],
that promotes the adoption of an open server architecture for
data centers and compute clusters across various organizations
around the world. POWER8 [14], represented in Figure 1, is
the first processor supporting OpenPOWER. Each POWER8
CPU supports up to 12 cores per socket, with each core
supporting 8 hardware Simultaneous Multi-Threading (SMT)
threads, 64 KB L1 data cache and 32 KB L1 instruction cache.
In addition to this, each core supports a 512KB of L2 cache
and 8MB of L3 cache, along with up to 128 MB off-chip L4
eDRAM. Further, the on-chip memory controllers can handle
1 TB of RAM and 230 GB/s sustained memory bandwidth
and 48 GB/s of I/O to other parts of the system. The cores are
designed to operate at clock rates between 2.5 and 5 GHz.

Fig. 1: Overview of IBM POWER8 architecture

POWER8 also has enhanced prefetching features such
as instruction speculation awareness and data prefetch depth
awareness. It also introduces CAPI (Coherence Attach Pro-
cessor Interface) [3], which is a direct link into the CPU,
allowing peripherals and co-processors (GPUs, FPGAs, etc.)
to communicate directly with the POWER8 CPU. These
POWER8 servers have been designed to be suitable for Big
Data analytical workloads, by providing 4 times more threads
per core, memory bandwidth, and cache than other platforms.
POWER9 [48] is IBM’s successor to POWER8 that offers
scale-out and scale-up variations with either a 12-core SMT8
or a 24-core SMT4 model.
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B. InfiniBand and RDMA

InfiniBand (IB) [26] is an open industry-standard spec-
ification for data flow between server I/O and inter-server
communication that offers high-performance, low CPU over-
head, and scalability; with speeds of 56 Gb/sec (IB FDR), 100
Gb/sec (IB EDR), 200 Gb/sec (IB HDR), etc. IB networks
provide advanced features such as Remote Direct Memory
Access (RDMA), that allows software to remotely read or
update memory contents of another remote process without
involving the remote CPU. These features can be leveraged to
design low-latency communication protocols through the use
of the low-level Infiniband Verbs (ibverbs) library. InfiniBand
software stacks, such as OpenFabrics [39], provide a driver
for implementing the IP layer over InfiniBand (IP-over-IB).
Several IBM POWER8 clusters from the OpenPOWER foun-
dation are being equipped with Mellanox ConnectX-4 EDR IB
adapters and switch systems [17].

C. RDMA-based Designs for Apache Hadoop and Spark

A majority of the existing HPC clusters today are equipped
with modern high-speed interconnects, such as InfiniBand and
10/40 Gigabit Ethernet with RoCE/iWARP support, which of-
fers high-performance and advanced features such as RDMA.
This has driven the designs of new communication protocols
for accelerating Big Data middleware such as Apache Hadoop
and Spark [40]. Instead of using IPoIB or RSockets to translate
TCP/IP-based communication protocols, these designs employ
a native IB Verbs-based RDMA-aware communication engine
that replaces Java Sockets channel employed in the default
Apache Hadoop and Spark frameworks. The RDMA-based
communication protocols benefit the large-scale I/O involved
during HDFS write (with replication) [27, 28], high-speed
control message exchange in Hadoop RPC [33], and inter-
mediate data shuffling in MapReduce [43], and Spark frame-
works [34, 35]. Specifically, for Apache Spark, the proposed
RDMA-based communication engine servers as a pluggable
block transfer service which can support all three shuffle
schemes (sort, hash, tungsten-sort) [35], along with on-demand
RDMA connection establishment, non-blocking pipelined data
transfers, and slab-based buffer management [34].

While the RDMA-enabled communication engine has
shown tremendous performance improvements for x86 proces-
sor based InfiniBand clusters, in this paper, we study the poten-
tial and optimize these designs for upcoming ‘OpenPOWER
+ InfiniBand’ clusters.

III. PERFORMANCE CHARACTERIZATION WITH

RDMA-BASED HADOOP RPC ON OPENPOWER SYSTEM

In this section, we first use Hadoop RPC as a
communication-intensive workload to characterize the perfor-
mance of RDMA-based communication engine on an Open-
POWER system. In order to contrast, we also choose a
contemporary Intel Xeon x86 platform to conduct the same
experiments. Through these contrast tests, we are able to show
more insights into the performance characteristics. Table II
shows the hardware and software specification of the clusters
used in this paper.

TABLE II: Specification of the Clusters used in this paper

Specification Xeon OpenPOWER

Processor Family Intel Broadwell IBM POWER8
Processor Model E5 v2680 PPC64LE

Frequency 2.4 GHZ 3.5 GHZ
No. of Sockets 2 2

Cores per Socket 14 10
Threads per Core 1 8 (SMT Threads)

Mesh Config NUMA NUMA
RAM (DDR) 512 GB 256 GB
Interconnect IB-EDR (100 Gbps) IB-EDR (100 Gbps)

OS CentOS Linux
release 7.2.1511

Red Hat Enterprise Linux
Server release 7.2 (Maipo)

JDK IBM JDK 1.8.0
OpenJDK 1.8.0

IBM JDK 1.8.0
OpenJDK 1.8.0

A. Performance Comparison of RDMA and IPoIB on Open-
POWER and Xeon x86 Platforms

The first group of tests we performed compare the latency
of RDMA-based Hadoop RPC (v2.7.3) and default Hadoop
RPC running over IPoIB on OpenPOWER and Xeon x86
platforms. Figure 2 presents these results. We run Hadoop
RPC latency micro-benchmark [37] tests on two OpenPOWER
nodes. One node runs a server process and the other runs a
client process. In the Hadoop RPC latency benchmark, it runs
over 20K times of iterations for each message size and the
first half of iterations are considered as warming-up iterations.
Thus, the effect of JVM classloading, instance initialization,
etc. will be reduced to the minimal. The numbers are finally
reported by averaging 10K times of iterations. We undertake
these tests on other platforms or configurations for the latency
comparisons in the rest of this paper.

In Figure 2(a), we show the Hadoop RPC latency numbers
with RDMA and IPoIB on IBM POWER8 ppc64le archi-
tecture. In this figure, we run three times of tests for each
protocol. Overall, we see that RDMA can outperform IPoIB
by achieving up to 2.3X performance speedup across different
message sizes. However, if we look at different runs, we
see obvious performance variations. For example, the typical
RDMA-based Hadoop RPC only has around 600 us latency for
512 KB message size, while for the ‘RDMA-Run-2’ case, we
see the latency becomes around 1,530 us. Similarly, for IPoIB,
the typical latency for 512 KB message size is around 1,300 us,
but for the ‘IPoIB-Run-3’ case, we see the latency goes up to
2,100 us. Such type of variation pushes us to explore what
could be the reasons behind these numbers.

To figure out the possible reasons, we first conduct the same
kind of experiments on Intel Xeon x86 platform as the numbers
shown in Figure 2(b). From these numbers, we see that
RDMA-based Hadoop RPC protocol can achieve up to around
3X performance speedup compared to IPoIB-based protocol
across different message sizes. By comparing the numbers
between OpenPOWER and Xeon, we find that Hadoop RPC
has better performance on OpenPOWER system even though
they are using the same generation of InfiniBand EDR network.
This is mainly due to the higher CPU frequency of POWER8
cores, which will benefit the serialization and deserialization
processes of RPC calls. Regarding variations, similar trends
are also happening. These results make us even more doubting
since typically we do not see such large variations for Xeon
x86 systems during our regular tests.
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Fig. 2: Performance Comparison of RDMA and IPoIB on POWER8 and Xeon x86 Platforms with IBM JDK 1.8

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

0 5 10 15 20 

La
te

nc
y 

(u
s)

 

Sample Number 

IPoIB-256K IPoIB-512K 
RDMA-256K RDMA-512K 

(a) IBM POWER8 ppc64le

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

0 5 10 15 20 

La
te

nc
y 

(u
s)

 

Sample Number 

IPoIB-256K IPoIB-512K 
RDMA-256K RDMA-512K 

(b) Intel Xeon x86

Fig. 3: Variation Distributions of RDMA and IPoIB on
POWER8 and Xeon x86 Platforms with IBM JDK 1.8

To make sure the variations are not due to the use of sharing
cluster resources, we run 20 times of tests across different
times of three days. The numbers are drawn in Figure 3. The
X-axis means the sample number of the test. The Y-axis means
the latency of different runs. Interestingly, we do see variations
on both platforms for both protocols. Even though RDMA still
shows much better performance than IPoIB on both POWER8
and Xeon x86 platforms, we do want to reduce the variation
as much as possible.

During these experiments, one factor comes into our mind,
which is the JDK version being used in the above tests.
Typically, for our regular tests on Xeon x86 systems, we
use OpenJDK 1.7 or 1.8 in these days. However, since IBM
JDK has been optimized for IBM OpenPOWER systems, we
choose IBM JDK 1.8 as default JDK for performing above
experiments. To confirm our regular stable numbers, we switch
our JDK to OpenJDK 1.8 and rerun all of the above tests on
both platforms. Figure 4 shows the performance comparison
of RDMA and IPoIB on POWER8 and Xeon x86 platforms
with OpenJDK 1.8. As we see from Figure 4, the three
runs for both RDMA and IPoIB are much more stable than
earlier numbers and RDMA can show clear benefit (around
2X performance speedup on POWER8 and x86) compared to
the IPoIB protocol.

To confirm these results, we rerun the tests 20 times
on both POWER8 and Xeon machines, and Figure 5 shows
the the numbers. Compared to Figure 3, these numbers look
much more stable, especially on Xeon x86 systems. This also
matches the trend of our regular tests. However, on POWER8,
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Fig. 4: Performance Comparison of RDMA and IPoIB on
POWER8 and Xeon x86 Platforms with OpenJDK 1.8

there are still some outliers in the graph, of which the main
reason is due to multiple SMT threads in each physical core.
Note that on the Xeon x86 platform, the hyperthreading is
disabled on CPUs and we see very stable numbers on Xeon. To
disable SMT on POWER, we need the privileged permission,
which is impossible to get on HPC clusters traditionally. That
is why we skip the discussion on enabling and disabling
SMT threads for OpenPOWER systems. Some research studies
like [29] have discussed the SMT effect on the application
performance.

Since this paper focuses on how to achieve stable high
performance on OpenPOWER machines, we want to stick
to higher performance JDK on POWER8 machines. If we
compare Figure 2(a) and Figure 4(a), even though IBM JDK
shows larger variations compared to OpenJDK, it does show
higher performance on OpenPOWER systems compared to
OpenJDK. For example, for 512 KB message size, IBM JDK
can give respectively around 600 us and 1,300 us for RDMA
and IPoIB, while OpenJDK gives around 730 us and 1,400 us
for RDMA and IPoIB typically. This means if we can reduce
the variations for IBM JDK numbers, IBM JDK could become
a good choice for gaining better performance on OpenPOWER
systems.

B. Performance Impact of CPU Affinity for RDMA and IPoIB
on OpenPOWER System

In the HPC field, whenever we see variations in parallel
programs, one possible reason we should check is CPU affinity
setting. However, for Java based applications, many people feel
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Fig. 5: Variation Distributions of RDMA and IPoIB on
POWER8 and Xeon x86 Platforms with OpenJDK 1.8

it is better to let the OS and/or JVM make scheduling decisions
for threads, because by default, JVM-based applications will
have many internal threads for management, garbage collec-
tion, user-logic thread pools, etc. For example, in this simple
RPC latency benchmark, we see more than 80 threads launched
inside JVM for both server and client side on POWER8
platform. On Xeon x86 machines, there are also more than
40 Java threads launched for both server and client processes.
So many threads running in a single JVM process will easily
cause runtime noise on multi-core platforms and then further
lead to performance variations. With these analyses, we decide
to check what kind of impact of different CPU affinity settings
will be for RDMA and IPoIB on OpenPOWER system.

As discussed in Section II, a POWER8 processor typically
supports multiple SMT threads. On our platform, we have 8
SMT threads per single physical core. We then start trying
with different cases of binding JVM threads (both client and
server) from a single SMT thread to two SMT threads and
then four SMT threads. In order to bind to a physical core,
we bind all JVM threads to 8 successive SMT threads. For
binding to a CPU Socket, we bind all JVM threads to 80
successive SMT threads. As shown in Figure 6(a), the legend
‘IPoIB/RDMA-SMT-0-3’ means we bind JVM threads to the
first four SMT threads. The legend of ‘IPoIB/RDMA-Core-
0’ means we bind JVM threads to the first physical core.
The legend of ‘IPoIB/RDMA-Socket-0’ means we bind JVM
threads to the cores on the first Socket. We compare these
cases with the ‘IPoIB/RDMA-NB-Typical’ cases that show
typical numbers we get on IPoIB and RDMA protocols without
any CPU binding. Here, note that we do not show numbers
for CPU affinity setting on single SMT thread and two SMT
threads. This is because we find that those settings significantly
degrade the performance of both IPoIB and RDMA, since
running many threads on a small number of SMT threads
brings a lot of resource contention, which essentially causes
the performance overhead. We choose to bind threads to the
cores on the first Socket, which is because the InfiniBand HCA
card is attached to the first CPU Socket. Typically, the cores
on the first CPU socket which are closer to InfiniBand HCA
will give the application better communication performance.

From Figure 6(a), we see that proper CPU affinity settings
improve the performance for both IPoIB and RDMA. For
512 KB message size, the best number of RDMA with binding
threads to the first Socket is around 450 us while the typical
number of RDMA is around 600 us, which means a good CPU
affinity setting will bring 25% performance improvement. For
IPoIB, similarly, we see the best number with CPU binding
for 512 KB message size is 1,230 us while the typical number
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Fig. 6: Performance Comparison of RDMA and IPoIB on
POWER8 with Different CPU Affinity Settings (IBM JDK 1.8)

without binding is about 1,374 us, which means a good CPU
affinity setting will gain 10% performance benefit. These re-
sults indicate that RDMA-based communication performance
is heavily influenced by CPU affinity setting, which makes
CPU binding become a desired feature for RDMA-based
designs as compared to its importance to IPoIB performance.

We further conduct the variation distribution experiments
with different binding schemes as the results shown in Fig-
ure 6(b). Here, we see that binding JVM threads to all the
cores in the first CPU socket will give the best performance
in terms of latency, however, it also shows large variations
in some cases. This happens for both IPoIB and RDMA.
By contrast, binding to the first physical core gives the best
stability and reasonably good performance. Binding to the first
four SMT threads also shows good stability but slightly worse
performance. These numbers indicate that in order to get the
best performance and stability, we should choose a proper CPU
affinity setting policy, which needs to be tuned for different Big
Data workloads.

IV. PROPOSED ACCELERATIONS FOR RDMA-BASED

COMMUNICATION ENGINE ON OPENPOWER

In this section, we will describe the proposed accelerations
for RDMA-based communication engine for Big Data work-
loads on OpenPOWER systems with InfiniBand.

A. Basic Ideas

As discussed in Section III, a proper CPU affinity setting
may significantly influence the performance of RDMA-based
Big Data processing middleware. We can choose to bind
Java process in a coarse-grained manner as we have done
in Section III through some operating system tools, such as
taskset on Linux. However, the coarse-grained CPU affinity
setting approach may not be a smart way for complex Big Data
process workloads, since the Big Data processing middleware
typically have many components and each of them has many
internal threads. A naive CPU binding cannot do a better job
than the OS or JVM. In our experiments, we also see that a
bad CPU binding scheme hurts the whole job’s throughput and
execution time significantly. In this case, we ask the following
vital question: should we just follow the traditional convention
of letting the OS or JVM handle this complexity or find
effective CPU binding policies?

However, as we have seen the performance characterization
numbers in Section III, for IPoIB, letting JVM or OS do this
work may be reasonable since the best binding can only have
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around 10% performance improvement compared to the default
scheme. This is also why for the default Hadoop or Spark
frameworks, there is no CPU affinity setting support in their
out-of-box packages. However, for RDMA-based protocol,
we have seen that a proper CPU affinity setting not only
significantly improves the performance but also restrains the
performance variation. This makes us believe that exploring
CPU affinity for RDMA-based Big Data processing middle-
ware is worthy. If this is a worthy task and a coarse-grained
binding approach does not work out, we should explore the
opportunities of designing fine-grained CPU binding method
for Big Data frameworks. However, for the complex Hadoop-
and Spark-like Big Data processing frameworks with possibly
thousands of threads running in a single node, an efficient fine-
grained threading affinity setting is not trivial.

Fortunately, one of our observations is that RDMA-based
communication engine typically has less number of commu-
nication threads compared to default Sockets-based designs.
For example, in RDMA-based Hadoop RPC [33], we see that
with only 6 concurrent communication threads, RDMA-based
Hadoop RPC can achieve more than 60% throughput improve-
ment compared to the IPoIB scheme. Since our major goal is
improving the communication performance and restraining the
variation of it, we believe the fine-grained thread binding can
be done only for communication threads. If we just need to
bind a minimal number of communication threads to some
specific cores, this will make the fine-grained thread affinity
setting easier and it will also not influence the OS and JVM
thread scheduling policies too much. Thus, it will minimize
the side-effect on other compute threads.

B. Architecture Overview

With all of these observations, we propose our fine-grained
CPU affinity aware designs in RDMA-based communicate
engine for Big Data frameworks. As shown in Figure 7, our
proposed accelerations target on Hadoop and Spark-based Big
Data ecosystem. The important components include HDFS,
MapReduce, Spark, Hadoop RPC, and many others. All the
components will run on top of many Java processes and
threads. The communication in default designs will go through
Java Sockets library, TCP/IP stack, and IPoIB protocol over
InfiniBand. In all RDMA-enhanced designs1 for these com-
ponents, the communication will go through RDMA over JNI
layer, then interact with RDMA-based communication engine,
which is running over native Verbs interface. Our proposed
designs are mainly inside the RDMA-based communication
engine, and the new proposed components include:

Device Selection Module: Since we want to bind communi-
cation threads to CPU cores, we need to support applications
to select which InfiniBand device they are going to use, if
there are multiple ones presented in the system. We will open
the device based on the user’s selection and also transfer this
information to the locality detection module.

Locality Detection Module: Once we know which device is
being selected, we need to detect its locality information. Basi-
cally, we need to know the opened device is attached to which
CPU socket. This is important since if we bind communication

1We are using the packages in the High-Performance Big Data (HiBD)
project. URL: http://hibd.cse.ohio-state.edu/

Fig. 7: Architecture Overview of Proposed Accelerations in
RDMA-based Communication Engine

threads to CPU cores which are closer to InfiniBand HCA, it
will improve the communication performance.

Affinity Policies: We propose multiple affinity policies that
will be discussed in Section IV-C. We allow users to specify
which policy they want to run with their applications, so that
we can provide the flexibility for the end applications to have
proper CPU bindings.

Thread Binding Module: Once the InfiniBand device is
opened, locality information is detected, and the policy is
chosen, we need to enforce the actual thread binding into
the specific cores or SMT threads by the thread binding
module. This module will interact with the OS to bind a
particular Java thread to one or some specific SMT threads or
cores. This module is working on the critical path of RDMA
communication flow. Thus, all the upper layer RDMA-based
communication threads will go through this module and will
be pinned on some cores based on the selected policy. Since
binding threads works on the critical path, we need to reduce
such kind of interactions with the OS as much as possible. We
further propose a thread binding cache in this module, which
will store the current existing binding information. Every time,
we will first check if the current thread entering the RDMA
engine is already pinned or not. If it has been pinned earlier,
we will avoid the repeated pinning. Otherwise, we will pin it
and put it into the cache, so that next time if the same thread
comes, it will be recognized in the cache and go through this
module quickly.

C. Efficient CPU Affinity Setting Policies

We propose two broad categories of CPU-affinity setting
policies in this paper:

(1) One Communication Thread to N SMT Threads on the
Closer-to-HCA Socket (O2NTS): This policy will allow each
communication thread run on N SMT threads on the cores of
the POWER CPU on the socket closer to the InfiniBand HCA.
Here, we allow users to tune N to adapt to the application’s
communication requirements. There are two special cases in
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this category. (a) One Communication Thread to All Physical
Cores on the Closer-to-HCA Socket (O2ACS): In this policy,
we will bind each RDMA communication thread to all cores
on the socket closest to the InfiniBand HCA, i.e., N=80.
This scheme is motivated by the observations presented in
Section III, where we see such binding can potentially deliver
the best latency numbers; (b) One Communication Thread to
One Physical Core on the Closer-to-HCA Socket (O2OCS):
Based on the numbers presented in Section III, binding a
communication thread to a single physical core on the socket
closer to the IB HCA, i.e., N=8, will also bring performance
benefits as well as a reduction for the performance variation.
With this policy, we can bind the RDMA communication
threads to physical cores on the closer-to-IB-HCA CPU in
a round-robin fashion. Thus, we make the best use of the
available thread density and concurrency.

(2) One Communication Thread to N SMT Threads on a
CPU (O2NTC): This policy allows the RDMA communication
thread be pinned to N SMT threads available on any of the
POWER cores. Unlike the O2NTS policy, the communication
threads can be bound to any of the two sockets (i.e., either
socket 0 or socket 1) and not just the socket closer to
the InfiniBand HCA. Under this general CPU-affinity policy,
we have: One Communication Thread to One Physical Core
on the CPU (O2OCC). For O2OCC, we bind one RDMA
communication thread to one physical core on the POWER8
CPU, i.e., N=8. This policy will be beneficial if there are a
lot of upper-layer communication threads and we want to load
balance them across all the cores available on the CPU.

D. Architecture-aware Tuning

As we see that the POWER architecture is quite different
than x86, especially with many physical cores and SMT
threads available, our experience shows that it is very important
to perform POWER architecture-aware tuning for the RDMA
engine, in which the default parameters were well tuned
for x86 architecture but they may not the desired ones for
POWER platforms. In our design, we first support POWER
architecture detection in our RDMA engine and then, our
library will automatically choose the tuned parameters for
POWER architecture rather than the ones for x86. Currently,
these parameters are tuned in advance based on our testbeds.
We also support users to easily overwrite these values through
environment variables if they find the chosen parameter values
are not performing well on their POWER machines. From our
early experience, we observe that there are many performance
sensitive parameters to achieve good performance, such as
chunk size per RDMA operation, the number of handler
threads for data transferring, RDMA buffer pool size, etc. This
also implies that to achieve optimal performance for RDMA-
based designs on POWER machines is a big challenge, which
opens up a lot of future work opportunities.

V. PERFORMANCE EVALUATION

In this section, we present the detailed performance evalua-
tions of our proposed design and its impact on Apache Hadoop
and Apache Spark workloads.

A. Experimental Setup

In the following experiments, we use the OpenPOWER
cluster as mentioned in Table II. We use up to four Open-
POWER machines. Since OpenPOWER system is still quite
new, we do not have access to a large-scale OpenPOWER
cluster. We use IBM JDK 1.8 in our experiments. Apache
Hadoop 2.7.3 and Apache Spark 2.1.0 are used as default
Hadoop and Spark stacks to compare with. We integrate our
proposed designs with RDMA-Hadoop 1.1.0 and RDMA-
Spark 0.9.4, which are derivatives of Apache Hadoop 2.7.3 and
Apache Spark 2.1.0, respectively. In the following experiments,
the legend of ‘IPoIB’ means we run the default package with
IPoIB protocol. The legend of ‘RDMA-Def’ means we run
the RDMA-Hadoop and RDMA-Spark default designs over
RDMA protocol. The legend of ‘RDMA-Opt’ means we run
RDMA-Hadoop and RDMA-Spark with our proposed designs
over RDMA protocol.

We choose various workloads as listed in Table III. These
workloads aim to cover communication intensive workloads,
I/O intensive workloads, and comprehensive workloads (hav-
ing requirements on communication, computation, and I/O),
which can run on top of both Hadoop and Spark. Another
reason of choosing the workloads or benchmarks listed in
Table III is because these benchmarks can run with the targeted
platform in an isolated manner. When running them, we do not
need to involve many other components, which will avoid the
performance influence from other components.

B. Performance Evaluation with OHB Hadoop RPC Bench-
marks

In this subsection, we evaluate IPoIB-based Hadoop,
RDMA-Hadoop, and RDMA-Hadoop with our proposed ac-
celerations on the OpenPOWER cluster. Figure 8 shows
the performance evaluation with OHB Hadoop RPC latency
benchmark results. The legend of ‘IPoIB-Def’ means the
typical numbers we get with IPoIB-based Hadoop without
any manual CPU binding. The legend of ‘IPoIB-Manual-Best-
Binding’ means the best numbers we can get after we try with
different binding schemes for IPoIB-based Hadoop. Similarly,
we show the corresponding numbers for ‘RDMA-Def’ and
‘RDMA-Manual-Best-Binding’. We also take all the numbers
with the proposed five different CPU affinity setting policies
as we discussed in Section IV-C. These numbers are presented
under the legends of ‘RDMA + Policy Name’.

From these results, we first see that all the RDMA-based
schemes are obviously performing much better than IPoIB. The
best number with RDMA shows 2.73X performance speedup
compared to the best number we can get with IPoIB. Secondly,
we find that with our proposed fine-grained thread binding
schemes, we are able to achieve similar performance as the best
binding scheme by manually. For example, the best-binding
scheme by manually can achieve 450 us latency for 512 KB
message size, while the ‘RDMA-O2ACS’ scheme is able to
get around 453 us latency. In the ‘RDMA-O2ACS’ scheme,
all the communication threads will be allowed to run on all
the cores which are on the close-to-HCA socket. These results
also match with the experiments we have done in Section III.

In addition, we find ‘RDMA-O2NTS (N=1)’ and ‘RDMA-
O2NTC (N=1)’ are showing slightly worse performance com-
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TABLE III: Workload Description and Category

Workload Description Category Targeted Platform

OHB-RPC-Latency [37] OSU HiBD Microbenchmark for evaluating Hadoop RPC latency Communication-Intensive Hadoop
TestDFSIO Hadoop Distributed File System Benchmark to evaluate throughput and average I/O rate I/O-Intensive Hadoop

GroupBy
A Spark benchmark to group the values for each key in the RDD into a single
sequence

Comprehensive Benchmark Spark

SortBy A Spark benchmark to sort the the RDD by key Comprehensive Benchmark Spark

pared to other RDMA binding schemes, which indicates that
if we bind each communication thread with one SMT thread,
we can not utilize the CPU cores efficiently. Rather than these,
if we bind the communication thread with one physical core
(i.e., 8 SMT threads) or one Socket (i.e., 80 SMT threads;
closer to HCA), the performance is very close to the best bind-
ing scheme by manually. In the following experiments with
Hadoop and Spark workloads, we choose ‘RDMA-O2ACS’ as
the default policy.

Regarding performance variations, since we only bind
communication threads to some cores, there still have some
small variations due to Java garbage collection threads and
other JVM management threads running over different cores.
We do not want to bind those threads because, for complex
application scenarios, those threads need to take care of the
memory garbage collection and other management tasks in
the whole JVM. It is better to let the OS and JVM make the
scheduling decision for them.
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Fig. 8: Performance Evaluation with OHB Hadoop RPC
Benchmark

C. Performance Evaluation with Hadoop Benchmarks

In this subsection, IPoIB-based Hadoop, RDMA-Def
Hadoop, and RDMA-Opt Hadoop are evaluated with Hadoop
TestDFSIO Write Benchmark on the OpenPOWER cluster
listed in Table II. For each experiment, four nodes are used
as DataNodes, and one of them is configured as NameNode
as well. For each TestDFSIO Write benchmark, 64 mappers
and 32 reducers are used. Figure 9 illustrates the performance
differences and highlights the performance variations (shown
as error bars) of different Hadoops on the OpenPOWER clus-
ter. Note that the tested data size does not go beyond 20 GB,
which is mainly because the available local disk space (around
30 – 40 GB) is quite small on each of these OpenPOWER
machines. Due to the default three-replica setting, we could
only run 10 GB and 20 GB tests for both IPoIB and RDMA

designs on this cluster. We report throughput and average IO
rate for Hadoop TestDFSIO Write benchmark.
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Fig. 9: Performance Evaluation with Hadoop TestDFSIO Write

Throughput: As shown in Figure 9(a), the RDMA-Opt design
can achieve up to 29.37% improvement compared to the
RDMA-Def for Hadoop TestDFSIO Write, and outperforms
IPoIB-based Hadoop by up to 53.73%. Meanwhile, we ob-
serve that RDMA-Opt is the most stable scheme that has a
variation of about -13.04% to +7.99%, as compared to IPoIB’s
variation of about -24.90% to +25.07% and the RDMA-Def’s
performance variation of around -23.45% to +19.38%.

Average IO Rate: From average IO rate perspective, the
RDMA-Opt design improves performance by about 29.97%
over RDMA-Def and up to 70.60% as compared to default
design running over IPoIB. The performance variations for
IPoIB, RDMA-Def, and RDMA-Opt are -16.79% to +18.46%,
-27.13% to +15.87%, and -13.35% to +10.90%, respectively.

From these numbers, we see that our RDMA-Opt design,
with proper communication thread binding and architecture-
aware tuning, can effectively and efficiently exploit the Open-
POWER clusters, while dramatically improve performance as
well as reduce performance variation.

D. Performance Evaluation with Spark Benchmarks

In this section, we evaluate IPoIB-based Spark, RDMA-Def
Spark, and RDMA-Opt Spark with Spark SortBy and GroupBy
benchmarks on the OpenPOWER cluster. For all experiments
presented in this section, the Spark cluster is deployed on four
nodes; with one of the four nodes acting as Spark Master and
the other three run the Spark Workers. For each Spark run, the
number of maps and reduces are configured as 480 to saturate
all CPU cores on the OpenPOWER-based cluster.

The performance results of different Spark designs are
shown in Figure 10. From Figure 10(a), we observe that the
RDMA-Opt design can demonstrate up to 23.52% performance
gain over default Spark running over IPoIB, and up to 10.48%
performance improvement as compared the default RDMA-
based Spark design, while running the SortBy benchmark.
Similarly, Figure 10(b) illustrates that for the Spark GroupBy
benchmark, the RDMA-Opt design outperforms the IPoIB and
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the RDMA-Def by 22.15% and 14.83%, respectively. These
results show that for Spark workloads, our proposed enhanced
schemes can also perform better than default IPoIB and RDMA
schemes on POWER architecture.
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Fig. 10: Performance Evaluation with Spark Benchmarks

VI. RELATED WORK

In this section, we discuss related work in the following
two categories.

HPC Middleware on OpenPOWER: Softwares and middle-
wares that are primarily employed by scientific applications,
such as MPI [10, 38], that can exploit and deliver optimal
performance on HPC clusters, including, IBM POWER sys-
tems has been a popular topic among researchers. Performance
evaluations of OpenMP or a hybrid OpenMP+MPI-based
parallelization approaches for HPC scientific applications on
POWER8 architecture are presented in [19, 20, 45]. Research
work such as [32, 47] explore ways to improve the scalability
and performance of MPI libraries on POWER8 InfiniBand
clusters, along with GPU-to-GPU communication. Similarly,
to leverage the capabilities of the OpenPOWER architec-
ture, researchers have proposed new and enhanced collective
communication algorithms to accelerate MPI-based scientific
applications [21]. In addition to MPI-based HPC applications,
IBM OpenPOWER clusters are enabling advances in medical
research through accelerating large-scale and data-intensive
genomics analytics [4, 8].

High Performance Data Analytics on OpenPOWER: Re-
cently, substantial research efforts are being directed towards
exploring means to exploit the high thread density and con-
currency of OpenPOWER for accelerating Big Data process-
ing middleware. Towards this, IBM has introduced a free,
open source distribution of Apache Hadoop and Spark to
work seamlessly on IBM systems, including, OpenPOWER
clusters [7]. With the increasing popularity of Apache Spark
for designing Big Data applications, efforts are being made
to employ IBM POWER systems to accelerate Spark work-
loads [1, 16, 22]. Studies have been dedicated towards un-
derstanding the performance of different Spark workloads on
OpenPOWER clusters [42], and tuning Spark/JVM parameters
to fully leverage the memory bandwidth, cache structure,
thread density, etc., enabled by the OpenPOWER architec-
ture [2]. Research studies such as [29] have been devoted
to proposing prediction-based frameworks that can auto-adjust
the thread count in SMT cores on POWER8 processors for
obtaining optimal performance for various Spark-based Big
Data workloads. In addition to traditional Big Data workloads,
OpenPOWER technologies such as CAPI and NVlink cou-
pled with GPU-/FPGA-enabled and high-bandwidth network-
connected clusters present a desirable end-to-end solution

for training and classification of datasets in machine and
deep learning frameworks [9, 11]. In contrast, this paper
focuses on analyzing and accelerating Apache Hadoop and
Spark frameworks that have been redesigned with RDMA for
InfiniBand/RoCE-enabled HPC clusters [34], in order to enable
optimal performance on OpenPOWER clusters.

VII. CONCLUSION

In this paper, we first illustrate extensive performance
characteristics on RDMA-based Hadoop RPC engine over an
‘POWER8 + InfiniBand’ platform. Our performance charac-
terization shows that existing RDMA-based communication
engine for Big Data processing middleware originally designed
for x86 architectures still outperforms the default designs
running over IPoIB protocol. In the meantime, we observe
that the performance of both IPoIB and RDMA on the Open-
POWER platforms can vary a lot. Based on the analysis,
we propose several designs to enable efficient CPU affinity
setting policies and architecture-aware tuning inside RDMA-
based communication engines for both Hadoop and Spark to
exploit the OpenPOWER multi-core platforms. Our evaluation
results show that our proposed RDMA-Opt Hadoop design
can achieve up to 2.73X speedup compared to IPoIB-based
Hadoop, up to 29.37% throughput performance improvement
compared to the RDMA-Def Hadoop. Our RDMA-Opt Spark
design can gain up to 23.52% performance improvement
compared to the IPoIB-based Spark, up to 14.83% speed-
up compared to the RDMA-Def Spark. We also see that our
proposed designs for Hadoop and Spark can reduce the perfor-
mance variations for workloads running on the OpenPOWER
platforms. Overall, our proposed designs achieve higher and
more stable performance on the OpenPOWER systems with
native RDMA-based communication engines for popular Big
Data processing middleware such as Apache Hadoop and
Spark.

In the future, we plan to investigate further on acceler-
ating Big Data processing middleware on the OpenPOWER
platforms and propose new designs along these directions. We
also plan to make all of our designs available through RDMA-
based Hadoop and Spark packages.
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