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Abstract—Deep Learning over Big Data (DLoBD) is becoming
one of the most important research paradigms to mine value
from the massive amount of gathered data. Many emerging deep
learning frameworks start running over Big Data stacks, such
as Hadoop and Spark. With the convergence of HPC, Big Data,
and Deep Learning, these DLoBD stacks are taking advantage
of RDMA and multi-/many-core based CPUs/GPUs. Even though
a lot of activities are happening in the field, there is a lack of
systematic studies on analyzing the impact of RDMA-capable
networks and CPU/GPU on DLoBD stacks. To fill this gap, we
propose a systematical characterization methodology and con-
duct extensive performance evaluations on three representative
DLoBD stacks (i.e., CaffeOnSpark, TensorFlowOnSpark, and
BigDL) to expose the interesting trends regarding performance,
scalability, accuracy, and resource utilization. Our observations
show that RDMA-based design for DLoBD stacks can achieve
up to 2.7x speedup compared to the IPoIB based scheme. The
RDMA scheme can also scale better and utilize resources more
efficiently than the IPoIB scheme over InfiniBand clusters. For
most cases, GPU-based deep learning can outperform CPU-based
designs, but not always. We see that for LeNet on MNIST, CPU
+ MKL can achieve better performance than GPU and GPU +
cuDNN on 16 nodes. Through our evaluation, we see that there
are large rooms to improve the designs of current generation
DLoBD stacks further.

I. INTRODUCTION

As the explosive growth of Big Data continues, there is an

increasing demand for getting Big Value out of Big Data to

drive the revenue continuously growing. To mine more value

from the massive amount of gathered data, in these days,

Deep Learning over Big Data (DLoBD) is becoming one of

the most efficient analyzing paradigms. With this emerging

paradigm, more and more deep learning tools or libraries start

being run over big data stacks, such as the most popular

representatives – Apache Hadoop and Spark. By combining

the advanced capabilities from deep learning libraries (e.g.,

Caffe [21], TensorFlow [9]) and big data stacks (e.g., Spark

and Hadoop), the DLoBD approach can enable powerful

distributed deep learning on big data analytics clusters with

at least following three major benefits. 1) From the data

analytics workflow perspective, if we run deep learning jobs

on big data stacks, we can easily integrate deep learning

components with other big data processing components in

the whole workflow. 2) From data locality perspective, since

This research is supported in part by National Science Foundation grants
#CNS-1419123, #IIS-1447804, #ACI-1450440, #CNS-1513120, and #IIS-
1636846. It used the Extreme Science and Engineering Discovery Environ-
ment (XSEDE), which is supported by National Science Foundation grant
number OCI-1053575.

the large amount of gathered data in companies typically is

already stored or being processed in big data stacks (e.g.,

stored in HDFS), deep learning jobs on big data stacks can

easily access those data without moving them back and forth.

3) From infrastructure management perspective, we do not

need to set up new dedicated deep learning clusters if we can

run deep learning jobs directly on existing big data analytics

clusters. This could significantly reduce the costs of device

purchasing and infrastructure management.

With the benefits of integrating deep learning capabilities

with big data stacks, we see a lot of activities in the com-

munity to build DLoBD stacks, such as CaffeOnSpark [2],

SparkNet [28], TensorFlowOnSpark [11], DL4J [6], and

BigDL [1]. For DLoBD stacks, many people have the concern

about their ‘sub-optimal’ performance. With the convergence

of HPC, Big Data, and Deep Learning, these emerging DLoBD

stacks are being designed to leverage Remote Direct Memory

Access (RDMA) capable high-performance interconnects and

multi-/many-core based CPUs/GPUs. These powerful devices

give a lot of opportunities to speed up the DLoBD stacks.

Fig. 1: Characterization Scope of DLoBD Stacks
Figure 1 shows the main components that a typical deep

learning job running over DLoDB stacks involves. As we can

see, there are at least four major layers: deep learning library

layer, big data analytics framework layer, resource scheduler

layer, and distributed file system layer. There are a lot of efforts

in the field to improve the performance of each of these layers.

For example, the default Caffe and TensorFlow can leverage

the high-performance GPU accelerators with the co-designed

efficient cuDNN [18] library, while BigDL can efficiently run

on Intel CPUs or Xeon Phi devices by utilizing the highly

optimized Intel MKL [33] library or BLAS libraries. Yahoo!

researchers have proposed RDMA-based communication in

CaffeOnSpark and TensorFlowOnSpark. Our earlier work [20,

24, 26, 34] have proposed RDMA-based designs for Spark and

Hadoop. Even though these work have been proposed and well

2017 IEEE 25th Annual Symposium on High-Performance Interconnects

2332-5569/17 $31.00 © 2017 IEEE

DOI 10.1109/HOTI.2017.24

87

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:35:46 UTC from IEEE Xplore.  Restrictions apply. 



studied with their targeted workloads and environments, there

is a lack of systematic studies on analyzing the impact of

RDMA-capable networks and CPUs/GPUs on DLoBD stacks

with different deep learning models and datasets. We lack

understanding the impact of these advanced hardware and the

associated efficient building blocks (e.g., RDMA, GPUDirect

RDMA, cuDNN, and MKL) on various deep learning aspects,

including performance, accuracy, scalability, and resource uti-

lization. These lead to the following broad challenges:

(1) How are current generation DLoBD stacks and their

communication subsystems designed?

(2) Can RDMA-based designs in DLoBD stacks improve

performance, scalability, and resource utilization on high-

performance interconnects, GPUs, and multi-core CPUs?

(3) What are the performance characteristics of representative

DLoBD stacks when they run typical deep learning workloads

on RDMA-capable networks?

(4) What kind of trends and insights can we observe in our

evaluations for performance and accuracy, which are the two

most important factors for deep learning workloads?

To address all of these challenges, this paper first se-

lects three representative DLoBD stacks (i.e., CaffeOnSpark,

TensorFlowOnSpark, and BigDL) based on their popularity

and designs. We overview their architecture differences and

similarities in Section II, which help us to design our character-

ization methodology. Then, we further propose a systematical

characterization methodology in Section III to cover a broad

range of evaluation dimensions, such as comparing different

networking protocols (i.e., IPoIB vs. RDMA), comparing

different ways of integration with big data stacks (i.e., in-

band communication vs. out-of-band communication), and

comparing solutions using different computing devices (i.e.,

CPU vs. GPU). Our characterization will focus on four differ-

ent perspectives, including performance, accuracy, scalability,

and resource utilization. Section IV presents our detailed

evaluation, which shows that RDMA-based DLoBD stacks

can achieve up to 2.7x speedup compared to the IPoIB based

scheme. RDMA-based designs can also scale better and utilize

resources more efficiently than the IPoIB scheme. For most

cases, we see GPU-based deep learning can outperform CPU-

based designs, but not always. We see that for LeNet on

MNIST, CPU + MKL can achieve better performance than

GPU and GPU + cuDNN on 16 nodes. Through our evaluation,

we also see that there are still large rooms to improve the

designs of current generation DLoBD stacks. More insights

are shared in this paper to guide designing next-generation

DLoBD stacks. Section V discusses related work. We conclude

the paper with observed insights and future work in Section VI.

II. OVERVIEW OF DLOBD STACKS

There are broadly two mechanisms for parallelizing a deep

learning algorithm: Model Parallelism and Data Parallelism.

Model Parallelism is when the different processing elements

use the same data, but the model is distributed among them.

In the Data Parallelism, the same model is used for every

processing element, but different parts of the data are read and

processed by all processing elements in parallel. This paper

focuses on data parallelism, which is more related to system-

level studies. This paper chooses three popular and representa-

tive DLoBD stacks (i.e., CaffeOnSpark, TensorFlowOnSpark,

and BigDL) which support data parallelism to conduct the

detailed analysis. We compare the architecture of these three

systems in the following subsections.

A. CaffeOnSpark Overview
CaffeOnSpark is a Spark deep learning package designed

by Yahoo! based upon Apache Spark and Caffe. It inherits

features from Caffe like computing on CPU, GPU, and GPU

with accelerating components (e.g. cuDNN). CaffeOnSpark

enables deep learning training and testing with Caffe to be em-

bedded inside Spark applications. Such an approach eliminates

unnecessary data movement and benefits deep learning from

the high performance and scalability of Hadoop and Spark

clusters. For example, Flickr team improved image recognition

accuracy significantly with CaffeOnSpark by training with the

Yahoo Flickr Creative Commons 100M [14] dataset.

The system architecture of CaffeOnSpark (YARN cluster

mode) is illustrated in Figure 2(a). CaffeOnSpark applications

are launched by standard Spark commands, and then Spark

on Yarn launches a number of Spark executors. After Spark

executors are running, there are two approaches to manage

training and testing data. One is the local DB-based approach,

in which the Spark driver reads database file from HDFS,

loads it into local database instance (e.g., LMDB [8]), and

then transforms the data inside local database into RDD. The

other approach is HDFS-based, which means that the Spark

executors fetch training and testing data directly from HDFS.

However, in the HDFS-based approach, the raw data needs to

be converted into sequence files or DataFrame format. After

Spark executors are running and all data are ready, Caffe

engines on GPUs or CPUs are setup within Spark executors.

The Caffe engine is then being fed with a partition of training

data (i.e., data parallelism). After back-propagation of a batch

of training examples, the Model Synchronizer will exchange

the gradients of model parameters via allreduce style interface

over either RDMA or TCP. At the end of each CaffeOnSpark

application, the final model will be stored on the HDFS.

B. TensorFlowOnSpark Overview
Vanilla TensorFlow does not provide support for training

over Big Data stacks. SparkNet [28] and TensorFrame [10]

are some of the initial efforts in the direction but left a lot to

be desired regarding the features provided. Thus, Yahoo! took

their experience from developing CaffeOnSpark to come up

with TensorFlowOnSpark, a framework that enables execution

of Deep Learning jobs using TensorFlow on an existing Big

Data cluster using Spark to distribute the training and includes

support for RDMA over capable networks.

TensorFlowOnSpark seamlessly integrates along with other

Spark components such as SparkSQL, MLlib, etc. in the

overall Spark ecosystem, requiring minimal changes to de-

fault TensorFlow code. Figure 2(b) presents the architecture

overview of TensorFlowOnSpark. TensorFlowOnSpark allows

Spark Executors acting as containers used to run TensorFlow

code. It provides two different modes to ingesting data;
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(a) Overview of CaffeOnSpark (b) Overview of TensorFlowOnSpark (c) Overview of BigDL

Fig. 2: Architecture Overview of DLoBD Stacks

QueueRunners are used to read data directly from HDFS using

built-in TensorFlow modules whereas Spark Feeding provides

the data from Spark RDDs to Spark executors, which in turn

feed it to the TensorFlow core.

Similar to CaffeOnSpark, TensorFlowOnSpark also by-

passes the Spark architecture for communication (i.e., out-of-

band communication) therefore achieving similar scalability as

standalone TensorFlow jobs. One different design compared to

the architecture of CaffeOnSpark is that TensorFlowOnSpark

is ParameterServer-based approach. The parameter server will

be setup embedded inside one Spark executor and talk to other

tensors over gRPC or gPRC with RDMA.

C. BigDL Overview
BigDL is proposed by Intel to provide a high-performance

and distributed Deep Learning runtime which makes efficient

use of Intel processors and co-processors (such as Intel Xeon

Phi). BigDL uses Spark to scale out to multiple processes.

BigDL is written using Intel’s Math Kernel Library (MKL)

which provides optimized support for vector primitives fre-

quently used in deep learning applications. Therefore, it sig-

nificantly outperforms most deep learning frameworks out-of-

the-box on a single node Intel Xeon Phi processor.

Figure 2(c) shows the architecture of BigDL is also based

on Parameter Server that is tightly designed with Spark Block

Manager component, which is heavily involved during Spark

Shuffle. The feeding data to BigDL core are ingesting by Spark

Executor which can directly load data from HDFS. Parameter

updates of the training model (i.e., major communication

phase) are exchanged among BigDL cores through parameter

server which is based on Spark shuffle architecture. This in-

band communication approach is different from the out-of-

band approach (i.e., bypass Spark shuffle) applied in Caf-

feOnSpark and TensorFlowOnSpark. Moreover, default Spark

does not support RDMA-based shuffle, which implies BigDL

cannot utilize high-performance networks in the most efficient

manner by default. However, our recent studies [24, 26] can

support native verbs-based high-performance RDMA shuffle

in Spark, which can be used to fill this gap for BigDL.

D. Summary
To summarize, these three DLoBD stacks are designed

differently, and all of them can take advantage of modern HPC

technologies (e.g., multi-core CPUs, GPUs, RDMA, etc.) in

varied ways to speed up deep learning performance. In the

meantime, all of them can run on top of the same Big Data

stacks (i.e., Spark, Hadoop). These commonalities, as well as

their differences, make us choose them to represent a broad

range of DLoBD stacks to be investigated in this paper.

III. CHARACTERIZATION METHODOLOGY

This section describes our proposed characterization

methodology on evaluating DLoBD stacks.

A. Methodology Overview
To systematically characterize DLoBD stacks, we propose

a holistic evaluation methodology as shown in Figure 3. The

characterization methodology comprises four main aspects.

First of all, we conduct an extensive survey on selecting the

typical deep learning workloads, including popular deep learn-

ing models and open datasets. We need to make sure the se-

lected models have varied sizes to cover big and small models.

Similarly, for datasets, we need to choose both small and large

ones. Thus, we could cover different kinds of combinations,

such as training varied-size models on both small and large

datasets, which could expose more different characterization

trends. Since the importance of workload selection, we will

give detailed descriptions on selected benchmarks and datasets

in Section III-B.

Secondly, as discussed in Section II, we choose to run

the deep learning workloads on three DLoBD stacks (i.e.,

CaffeOnSpark, TensorFlowOnSpark, and BigDL). These three

stacks can run on the same underlying environment, including

Spark engine, YARN scheduler, and HDFS file system, which

are the most popular components for big data processing. The

evaluations on these stacks will give bigger impact to more

researchers and developers on this community.

Thirdly, to organize the experiments properly, we fully

take into account the three major evaluation dimensions,

such as processor type, network protocol, and communication

approach in different stacks. For processor type, we first

verify the effect of powerful computing accelerators (such as

NVIDIA GPU) and multi-core CPUs (such as Intel Broadwell

and Haswell) on DLoBD stacks. We want to find out with

some highly optimized libraries on GPUs (e.g., cuDNN) and

CPUs (e.g., Intel MKL), how will DLoBD stacks perform with
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typical deep learning workloads? For network protocol, we

focus on investigating the impact of IPoIB and RDMA on deep

learning workloads. CaffeOnSpark and TensorFlowOnSpark

have RDMA support by default, while BigDL can run with

our designed RDMA-Spark [24, 26] to support RDMA-based

deep learning. Thus, through evaluating these three stacks, we

can assess the benefits of RDMA with different RDMA-based

communication engine designs for deep learning workloads.

For communication approach, we characterize both out-of-

band (i.e., CaffeOnSpark, TensorFlowOnSpark) and in-band

(i.e., BigDL) based communication designs in DLoBD stacks.

Last but not least, we need to show evaluation reports and

analysis in detail based on all the evaluations. Even though the

performance is the most important metric in our evaluation, we

also care about other metrics, such as accuracy, scalability, and

resource utilization. For performance, we will explore three

major factors: 1) end-to-end model training time, 2) consumed

time to reach a certain accuracy, and 3) epoch-level execution

time. We believe all these factors and metrics are the major

aspects for characterizing deep learning workloads. From our

detail reports, we also want to excavate more observations to

guide designing efficient next-generation DLoBD stacks.

B. Benchmarks and Data Sets
To characterize DLoBD stacks, we have chosen three popu-

lar datasets: MNIST [13], CIFAR-10 [12], and ImageNet [7],

which have different categories, resolutions, classes or scales

as shown in Table I.

MNIST consists of 70K black and white handwritten digit

images, which have been size-normalized and centered in a

fixed-size 28 × 28. Even though the focus of research has

moved on to other much more challenging image recognition

problems, the fast speed of training on the MNIST dataset

means that it is still a proper problem for evaluation purpose.

CIFAR-10 has 50K training images and 10K test images,

which are 32 × 32 RGB images in ten classes. The ten

classes include airplane, automobile, bird, cat, deer, dog, frog,

horse, ship, and truck. Nearly all deep learning frameworks

use the CIFAR-10 dataset as one example, and there are many

accuracy results reported publicly on it. Hence, the CIFAR-10

dataset is one of the most popular choices to evaluate object

recognition algorithms.

ImageNet refers to the dataset for ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) 2012. As in 2012,

the ILSVRC competition involved a training set of 1.2 million

256 × 256 color images, in 1,000 categories. The ImageNet

problem is one of the most challenging object recognition

problems for modern computer vision research and deep

learning research. Because of the long lasting training time

of complex models on the ImageNet dataset, evaluating deep

learning frameworks on it becomes one of the best choices.

Based on the selection of datasets, we use six well-known

trained models: LeNet [23], SoftMax Regression [19], CIFAR-

10 Quick [3], VGG [30], AlexNet [22] and GoogLeNet [31].

These models, as depicted in Table III, differing in general

architecture and dataset, may offer different insights in the

evaluation of DLoBD stacks. The combinations of models and

datasets are illustrated in Table III, which can be generally

grouped into three categories: 1) Simple and “shallow” model

with small dataset, such as LeNet with MNIST dataset and

CIFAR-10 Quick with CIFAR-10 dataset, 2) Complex and

“deep” model with small dataset, like VGG with CIFAR-10,

and 3) Complex and “deep” model with large dataset, e.g.

AlexNet and GoogLeNet with ImageNet dataset.

Generally speaking, there are not so many parameters

involved in simple and “shallow” models. For example, the

LeNet model has total 431K weights. On the other hand,

complex and “deep” models will generate tons of param-

eters during training time. GoogLeNet, a 22-layer model

with complicated Inception modules performing different sizes

of convolutions, outputs 7 million weights in all layers. In

DLoBD stacks, those model parameters need to be exchanged

among all workers. Thus, the model complexity influences the

performance of communication subsystem in DLoBD stacks

significantly. With the purpose of evaluating DLoBD stacks,

we finally select these models, and their detailed descriptions

can be found in Table III. In this table, we also indicate

which dataset is used for each model in this paper and which

framework has the corresponding model implementation in

their official distributions. With our survey, we believe that this

paper has covered a large range of available various models

and datasets in the deep learning community.

IV. PERFORMANCE EVALUATION

This section presents detailed characterization results.

A. Experimental Setup
(1) OSU RI2 Cluster (Cluster A): The RI2 cluster at

The Ohio State University comprises 20 nodes connected via

Mellanox single port InfiniBand EDR (100 Gbps) HCA. Each

node is equipped with two Intel Broadwell (E5-2680-V4) 14-

core processors, 128 GB RAM, and NVIDIA Tesla K80 GPU.

(2) SDSC Comet Cluster [27] (Cluster B): The Comet

supercomputing system at SDSC has 1,984 nodes. We use up

to 17 nodes in the evaluation. Each node is provisioned with

Intel Haswell (E5-2680-v3) dual twelve-core processors, 128

GB RAM, 320 GB local SDD. The network topology of Comet

is FDR (56 Gbps) InfiniBand with rack-level full bisection

bandwidth and 4:1 oversubscription cross-rack bandwidth.

Table II describes all used software for three different stacks

and which cluster is used for the evaluation. For experiments

in this section, if not specified, the number of nodes and batch

size have such a relation: #node × batch size = 128.

B. Evaluation on CPU vs. GPU
To characterize the performance of CPU and GPU based

deep learning solutions on DLoBD stacks, we conduct four

kinds of experiments on Cluster A with the CIFAR-10 Quick

model on the CIFAR-10 dataset and the LeNet model on the

MNIST dataset: 1) CPU + OpenBLAS, 2) CPU + MKL,

3) GPU, and 4) GPU + cuDNN. For these experiments,

we first run them with IPoIB protocol to expose possible

communication bottlenecks. As shown in Figure 4, the scale of

experiment cluster is up to 16 nodes, with one device (CPU or
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Fig. 3: Evaluation Methodology

TABLE I: Image Classification Datasets

MNIST CIFAR-10 ImageNet

Category Digit Classification Object Classification Object Classification
Resolution 28 × 28 B&W 32 × 32 Color 256 × 256 Color

Classes 10 10 1000
Training Images 60 K 50 K 1.2 M
Tesing Images 10 K 10 K 100 K

TABLE II: Used Software and Clusters

Stack Software Cluster

CaffeOnSpark Java-7 Python-2.7
A

(latest master branch) Spark-1.6 Hadoop-2.6.5

TensorFlowOnSpark (1.0)
Java-8 Python-2.7

A
Spark-2.1 Hadoop-2.7.3

BigDL Java-8 Scala-2.11
B

(latest master branch) Spark-2.1 Hadoop-2.7.3

TABLE III: Selected Deep Learning Models and Algorithms

Model
Layers

(Convolutional / Full-connected)
Dataset Description Framework

LeNet 2 / 2 MNIST
A CNN designed for handwritten and machine-printed CaffeOnSpark,
character recognition TensorFlowOnSpark

SoftMax Regression NA / NA MNIST
A logistic function that compresses a vector to another

TensorFlowOnSpark
vector of real values in the range (0, 1) that add up to 1

CIFAR-10 Quick 3 / 1 CIFAR-10
A model reproduced from Alex Krizhevsky’s cuda- CaffeOnSpark,
convnet [5] TensorFlowOnSpark

VGG 16 / 3 CIFAR-10 A deep convolutional network for object recognition BigDL

AlexNet 5 / 3 ImageNet
A CNN architecture designed to deal with complex

CaffeOnSpark
object classification task, won ILSVRC 2012

GoogLeNet 21 / 1 ImageNet
A CNN architecture with an Inception module, won

CaffeOnSpark
ILSVRC 2014

GPU) used per node in training and testing models. The End-

to-End time consumed by experiments, as represented by the

y-axis in the figure, includes training time and testing time.

The results of CIFAR-10 Quick experiments are shown

in Figure 4(a). The leftmost bars depict the performance of

these solutions on one node, which means no communication

overhead is involved in. We observe that the solution of

CPU + MKL has a 63% performance improvement compared

with that of CPU + OpenBLAS. While GPU without cuDNN

is 323.6% faster than CPU + MKL, and 1723.5% faster if

cuDNN is deployed. However, once we scale the cluster larger

than one node, which indicates that more communication is

introduced into, the situation becomes complicated. The slower

solutions, such as CPU + OpenBLAS, CPU + MKL, and GPU,

will benefit from the scalability of DLoBD stacks, and finally,

reach the bottleneck of the network. From the quantitative

perspective, compared with the performance on one node,

CPU + OpenBLAS on 16 nodes has a 78.3% performance

improvement, while 41.5% for CPU + MKL, and 15.9%

for GPU. On the other hand, the performance of the fastest

solution, e.g. GPU + cuDNN, is degraded while the DLoBD

stack is at a large scale.

For LeNet experiments, Figure 4(b) shows a different obser-

vation that CPU + MKL performs better than GPU and GPU +

cuDNN on 8 and 16 nodes. This result indicates two insights.

First, the CPU + MKL based solution can perform well on

Intel processors for deep learning models. Second, the design

of the communication library (for TCP/IP-based communi-

cation, i.e., IPoIB) used in synchronizing model parameters

among CPUs has less overhead, at least for training LeNet

model, than the one used among GPUs. More specifically, for

training LeNet model on one node, CPU + MKL improves

81.3% than CPU + OpenBLAS and is worse than GPU by

1.68x and GPU + cuDNN by 5.8x. But if the same job is

running on 16 nodes, the overall time is reduced by 5.02x and

2.43x for CPU + OpenBLAS and CPU + MKL, respectively.

For GPU and GPU + cuDNN, however, the overall time is

increased by 2x and 5.92x, respectively.
As we can see, deep learning frameworks can benefit from

the high performance of the DLoBD stacks, even though the

overall performance will reach the network bottleneck at some

point if we use the sub-optimal IPoIB network protocol. For

some models, solutions with CPU + MKL may outperform

GPU-based solutions.

C. Evaluation on IPoIB vs. RDMA
For evaluating DLoBD stacks with IPoIB and RDMA, we

conduct two experiments on Cluster A for CaffeOnSpark and

TensorFlowOnSpark, respectively. The results of experiments

on CaffeOnSpark, presented in Figure 5(a), show that Caf-

feOnSpark indeed has communication overhead at the scale of

16 nodes for training CIFAR-10 Quick model over both IPoIB
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Fig. 4: Performance Comparison for CPU-/GPU-based Deep

Learning with CaffeOnSpark (Cluster A)

and RDMA, and for training LeNet model over IPoIB. Our

observation, however, indicates that CaffeOnSpark benefits

from the high performance of RMDA compared to IPoIB

once communication overhead becomes significant. To be

quantitative, the overall performance of 16 nodes is improved

by 14.2% and 13.3% with employing RDMA instead of IPoIB

in training CIFAR-10 Quick model with GPU and GPU +

cuDNN, respectively. The performance is also improved by

51.2% and 45.6% for training LeNet model with GPU and

GPU + cuDNN over RDMA, respectively.
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Fig. 5: Performance Comparison for IPoIB and RDMA with

CaffeOnSpark and TensorFlowOnSpark (Cluster A)

The results of experiments on TensorFlowOnSpark are pre-

sented in Figure 5(b). For CIFAR10 example, we try to scale

the single-node, multi-GPU example provided to multi-node,

multi-GPU cluster. For this benchmark, RDMA outperforms

IPoIB by a significant margin (53.8% for 8 GPUs). We can

do so for up to 8 GPUs, but beyond that, it could not scale

and seems to be running into a race condition (as identified

by one of the TFoS developers [4]) which causes it to crash.

The MNIST example provided by TensorFlowOnSpark uses

SoftMax Regression model. We observe that for the smaller

number of nodes, RDMA outperforms IPoIB by about 4.9%,

but as we scale to more number of nodes, the performance

of RDMA is slightly worse than IPoIB. Moreover, scaling it

beyond four nodes causes the job hangs indefinitely. Because

of this, further performance numbers could not be taken. These

observations suggest that the RDMA design in TensorFlowOn-

Spark is not fully optimized yet.

From these tests, it appears that TensorFlowOnSpark is a

recent step in the right direction. Architecturally it seems to

be better designed compared with CaffeOnSpark. However, the

implementation for TensorFlowOnSpark is not stable yet, and

the examples provided so far have not been designed to scale to

multi-node multi-GPU clusters. We believe with the continued

effort in this project, TensorFlowOnSpark can become a major

player in the DLoBD community.

D. Evaluation on Performance and Accuracy
To characterize the performance and accuracy of DLoBD

stacks with IPoIB and RDMA, three well-known and trained

deep learning models, such as AlexNet, GoogLeNet and VGG

are chosen. Because of the model and dataset combination

strategy as mentioned in Section III-B, three kinds of experi-

ment are designed: 1) AlexNet + ImageNet, 2) GoogLeNet +

ImageNet, and 3) VGG + CIFAR-10. The ImageNet referred

in this subsection is a subset consisting of the first ten classes

of ILSVRC12 training and validation dataset. Such a choice is

because of the physical hardware limitations on Cluster A. In

the three experiments, training time to achieve a 70% accuracy

is the only factor to evaluate the performance of CaffeOnSpark

and BigDL. For CaffeOnSpark, Figure 6(a) and 6(b) depict that

replacing IPoIB with RDMA reduces the overall time cost by

22% and 15% in training AlexNet on ImageNet and training

GoogLeNet on ImageNet, respectively.

Figure 6(c) shows the performance and accuracy compar-

ison of training VGG model using BigDL on default Spark

with IPoIB and our Spark with RDMA. These tests are run

on Cluster B. While running BigDL on our RDMA Spark,

we observe that the model reaches an accuracy of 70% in

2,132 seconds. On the other hand, when the default Spark

on IPoIB is used with BigDL, VGG model achieves the same

accuracy in 4,337 seconds. Therefore, with the help of RDMA,

we can reach the same accuracy in 48% less time than IPoIB.

As the nature of training deep learning models like VGG is

communication intensive, RDMA provides a superior solution

to train a model when compared to IPoIB.

E. Epoch-Level Evaluation
In neural network terminology, an epoch can be described

as one pass of all the training examples. Figure 7(a) shows

the epoch level evaluation of training VGG model, on Cluster

B, using BigDL on default Spark with IPoIB and our Spark

with RDMA. For these experiments, the total number of CPU

cores used is 192, and the batch size is 768. The epoch level

evaluation gives a clear picture of the performance comparison

of training deep learning model with IPoIB and RDMA from

the systems perspective. As we can see from Figure 7(a), to

finish every epoch, RDMA version takes constantly less time

than the IPoIB version. For example, RDMA can reach the

end of epoch 18 in 2.6x time faster than IPoIB. Interestingly,

compared to the time saving (i.e., up to 48%) of reaching

a certain accuracy, we see higher (i.e., 2.6x) performance

improvement with RDMA for epoch-level evaluation.

F. Scalability Evaluation
Figure 7(b) shows the scalability evaluation of training

VGG model on Cluster B by using BigDL on default Spark

with IPoIB and on our Spark with RDMA. The figure shows

the accumulative time taken to finish the 18th epoch when

different numbers of CPU cores are used. We observe that

when our RDMA spark is used with BigDL to train VGG

model, the system scales better than when default IPoIB Spark

is used with BigDL. Besides, from Figure 7(b), we see with

384 CPU cores and same batch size, RDMA can finish epoch

18 in around 870 seconds. On the other hand, IPoIB takes
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Fig. 6: Performance and Accuracy Comparison of CaffeOnSpark (Cluster A) and BigDL (Cluster B) with IPoIB and RDMA

0 

10 

20 

30 

40 

50 

60 

10 
510 

1010 
1510 
2010 
2510 
3010 
3510 
4010 
4510 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

A
cc

ur
ac

y 
(%

) 

A
cc

um
ul

at
iv

e 
Ep

oc
hs

 T
im

e 
(s

ec
s)

  

Epoch Number 

IPoIB-Time 
RDMA-Time 
IPoIB-Accuracy 
RDMA-Accuracy 2.6X 

(a) Epoch-Level Evaluation

10 

1010 

2010 

3010 

4010 

5010 

96 192 384 

A
cc

um
ul

at
iv

e 
Ep

oc
hs

 T
im

e 
(s

ec
s)

 

IPoIB RDMA 

(b) Scalability Evaluation

Fig. 7: Epoch-Level and Scalability Evaluation with BigDL

(Cluster B)

2,372 seconds to finish the same number of epochs with the

same configuration. Therefore, with RDMA, we can achieve

up to 2.7x speedup for the epoch-level training time.

G. Evaluation on Resource Utilization
In this subsection, we first compare two kinds of resource

utilization based on the monitoring results in training CIFAR-

10 Quick model on the CIFAR-10 dataset with CaffeOnSpark

on Cluster A: 1) Network Utilization, 2) Host Memory Uti-

lization. Both utilization results are generated by the command

sar, which outputs the average consumption per time window

of 60 seconds. As shown in Figure 8(a), the RDMA-based

design utilizes the network resource more efficiently than the

IPoIB-based communication in CaffeOnSpark. The commu-

nication library inside CaffeOnSpark benefits from the lower

latency and higher achieved throughput of RDMA. It, however,

still does not fully utilize the high throughput characteristic of

RDMA based on Figure 8(a), which should be more beneficial

to DLoBD stacks.

Figure 8(b) presents the host memory utilization during

training. The two GPU-based solutions consume less host

memory than the two CPU-based solutions because they

mostly utilize GPU memory. The CPU + MKL solution uses

host memory more efficiently and effectively, so it has better

performance than CPU + OpenBLAS. In our experiments, we

observe that 1.5 GB and 10.9 GB GPU memory are consumed

in training with CaffeOnSpark and TensorFlowOnSpark, re-

spectively. The GPU memory utilization is monitored by the

command nvidia-smi with a time window of 20 seconds.

From the results represented in Figure 8(b), we can see that

so far, none of these frameworks can utilize both CPU and

GPU memory fully and efficiently, which means there are

huge performance improvement potential for the community

to explore.
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Fig. 8: Resource Utilization Comparison (Cluster A)

V. RELATED WORK

We summarize and discuss the related work along the

following four different categories.

Deep Learning over Big Data Stacks: TensorFlowOnSpark,

CaffeOnSpark, and BigDL have already been discussed in

Section II. However, there have been other efforts in this

direction as well. DL4J [6] is an effort to bring Deep Learn-

ing to the enterprise, which already has a lot of resources

dedicated to a JVM based setup. SparkNet [28] enables users

to run TensorFlow jobs in a distributed manner on Spark

Executors. TensorFrame [10] integrates Spark DataFrame API

with TensorFlow. Our choice of frameworks for this study not

only depends on their popularity but also because the selected

frameworks support the evaluative characteristics upon which

we want this study to be based on. They provide support for

RDMA over high-performance interconnects and also support

training using GPUs and CPUs on big data stacks.

Optimizing Big Data Stacks over High-Performance Net-
works: High-performance networking technologies such as

Infiniband and RDMA have improved network I/O latency an

order of magnitude compared to their Ethernet counterpart.

Recently, RDMA-enhanced versions of Hadoop [20, 25, 34],

Spark [24, 26] show that big data technologies can also ex-

hibit vast performance improvements by utilizing the features

provided by these fast networks.

HPC-based Deep Learning: To scale out DL frameworks,

HPC capabilities are brought to the DL arena these days.

The Microsoft Cognitive Toolkit (CNTK) [15] is a unified

deep-learning toolkit, which implements stochastic gradient

descent (SGD, error backpropagation) learning with automatic

differentiation and parallelization across multiple GPUs and

servers. Ammar et al. propose S-Caffe [16], an MPI-based

Caffe design for modern multi-GPU clusters. Abhinav et

al. [32] extend Google TensorFlow for execution on large-

scale clusters using MPI.

Related Studies on Deep Learning over Big Data: The
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literature contains a few studies examining the intersection

of deep learning and big data. The authors in [17] survey

Deep Neural Networks that have been successfully trained

on the big data level. The authors in [29] explore deep

learning algorithms which have been executed on big data

stacks and identify key areas of research that would help the

community better utilize big data stacks for deep learning

workloads. Different than those studies, this paper aims to

characterize DLoBD stacks regarding performance, scalability,

accuracy, and resource utilization on RDMA-capable networks

and multi-core CPUs/GPUs.

VI. CONCLUSIONS

This paper first presents a detail architectural overview of

three representative DLoBD stacks (i.e., CaffeOnSpark, Ten-

sorFlowOnSpark, and BigDL) over RDMA-capable networks.

Then, we conduct a comprehensive evaluation on these three

stacks to characterize their performance, scalability, accuracy,

and resource utilization with typical deep learning models

and datasets over CPU, GPU, and InfiniBand. Our evaluation

reports show the following insights and guidance:

(1) No matter our RDMA-Spark design or the other two

RDMA-designs in the community, we see the RDMA scheme

can benefit deep learning workloads. This paper shows up to

2.7x performance speedup with RDMA compared to the IPoIB

scheme for deep learning workloads. The RDMA scheme can

also scale better and utilize resources more efficiently than the

IPoIB scheme over InfiniBand clusters.

(2) Both GPU and CPU can compute deep learning workloads

faster with their co-designed efficient deep learning oriented

libraries, such as cuDNN and Intel MKL. For most cases,

GPU-based deep learning designs can outperform CPU-based

designs, but not always. We see that for LeNet on MNIST,

CPU + MKL can achieve better performance than GPU and

GPU + cuDNN on 8 and 16 nodes.

(3) For the same design, we can report performance benefits

from two perspectives: time to reach a certain accuracy and

consumed time for epoch-level. High-performance schemes

(e.g., RDMA) can benefit deep learning workloads from both

perspectives, but we see higher improvement with RDMA for

epoch-level evaluation.

(4) The current generation DLoBD stacks, like the ones we

have evaluated in this paper, still can not utilize all the

available cluster resources efficiently. There are still large

rooms for them to be further improved.

In the future, we plan to investigate more components in

DLoBD stacks and propose new advanced designs.
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