
DLoBD: A Comprehensive Study of Deep
Learning over Big Data Stacks on HPC Clusters

Xiaoyi Lu ,Member, IEEE, Haiyang Shi, Rajarshi Biswas,

M. Haseeb Javed , and Dhabaleswar K. Panda, Fellow, IEEE

Abstract—Deep Learning over Big Data (DLoBD) is an emerging paradigm to mine value from the massive amount of gathered data.

Many Deep Learning frameworks, like Caffe, TensorFlow, etc., start running over Big Data stacks, such as Apache Hadoop and Spark.

Even though a lot of activities are happening in the field, there is a lack of comprehensive studies on analyzing the impact of

RDMA-capable networks and CPUs/GPUs on DLoBD stacks. To fill this gap, we propose a systematical characterization methodology

and conduct extensive performance evaluations on four representative DLoBD stacks (i.e., CaffeOnSpark, TensorFlowOnSpark,

MMLSpark/CNTKOnSpark, and BigDL) to expose the interesting trends regarding performance, scalability, accuracy, and resource

utilization. Our observations show that RDMA-based design for DLoBD stacks can achieve up to 2.7x speedup compared to the

IPoIB-based scheme. The RDMA scheme also scales better and utilizes resources more efficiently than IPoIB. For most cases,

GPU-based schemes can outperform CPU-based designs, but we see that for LeNet on MNIST, CPU + MKL can achieve better

performance than GPU and GPU + cuDNN on 16 nodes. Through our evaluation and an in-depth analysis on TensorFlowOnSpark,

we find that there are large rooms to improve the designs of current-generation DLoBD stacks.

Index Terms—DLoBD, deep learning, big data, CaffeOnSpark, TensorFlowOnSpark, MMLSpark (CNTKOnSpark), BigDL, RDMA

Ç

1 INTRODUCTION

AS the explosive growth of ‘Big Data’ continues, there is
an increasing demand for getting Big Value out of Big

Data to drive the revenue continuously growing. To mine
more value from the massive amount of gathered data, in
these days, Deep Learning over Big Data (DLoBD) is becom-
ing one of the most efficient analyzing paradigms. With this
emerging paradigm, more and more Deep Learning tools or
libraries start being run over Big Data stacks, such as the
most popular representatives—Apache Hadoop and Spark.
By combining the advanced capabilities from Deep Learn-
ing libraries (e.g., Caffe [1], TensorFlow [2], and Microsoft
Cognitive Toolkit (CNTK) [3]) and Big Data stacks (e.g.,
Spark and Hadoop), the DLoBD approach can enable pow-
erful distributed Deep Learning on Big Data analytics clus-
ters with at least following three major benefits. 1) From the
data analytics workflow perspective, if we run Deep Learn-
ing jobs on Big Data stacks, we can easily integrate Deep
Learning components with other Big Data processing com-
ponents in the whole workflow. 2) From the data locality
perspective, since the large amount of gathered data in com-
panies typically is already stored or being processed in Big
Data stacks (e.g., stored in HDFS), Deep Learning jobs on

Big Data stacks can easily access the data without moving it
back and forth. 3) From the infrastructure management per-
spective, we do not need to set up new dedicated Deep
Learning clusters if we can run Deep Learning jobs directly
on existing Big Data analytics clusters. This could signifi-
cantly reduce the costs of device purchasing and infrastruc-
ture management.

With the benefits of integrating Deep Learning capabili-
ties with Big Data stacks, we see a lot of activities in the com-
munity to build DLoBD stacks, such as CaffeOnSpark,1

SparkNet [4], TensorFlowOnSpark,2 DL4J [5], BigDL [6], and
Microsoft Machine Learning for Apache Spark (MMLSpark
or CNTKOnSpark) [7]. Many of these DLoBD stacks are also
being deployed and used on Cloud Computing platforms,
such as Microsoft Azure. For DLoBD stacks, one of the typi-
cal concerns is about their ‘sub-optimal’ performance. As
shown in Fig. 1, with the convergence of HPC, Big Data, and
Deep Learning, these emerging DLoBD stacks are being
designed to leverage Remote Direct Memory Access
(RDMA) capable high-performance interconnects and
multi-/many-core based CPUs/GPUs. These powerful devi-
ces give a lot of opportunities to speed up the DLoBD stacks.

1.1 Motivation

Fig. 1 shows the main components that a typical Deep
Learning job running over DLoDB stacks involves. As we
can see, there are at least five major layers: Deep Learning
model or application layer, Deep Learning library layer, Big
Data analytics framework layer, resource scheduler layer,

� The authors are with the Department of Computer Science and Engineer-
ing, The Ohio State University, Columbus, OH 43202.
E-mail: {lu.932, shi.876, biswas.91, javed.19, panda.2}@osu.edu.

Manuscript received 16 Jan. 2018; revised 1 May 2018; accepted 23 May 2018.
Date of publication 11 June 2018; date of current version 29 Jan. 2019.
(Corresponding author: Xiaoyi Lu.)
Recommended for acceptance by R. Grant.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMSCS.2018.2845886

1. https://github.com/yahoo/CaffeOnSpark
2. https://github.com/yahoo/TensorFlowOnSpark

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018 635

2332-7766� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7581-8905
https://orcid.org/0000-0001-7581-8905
https://orcid.org/0000-0001-7581-8905
https://orcid.org/0000-0001-7581-8905
https://orcid.org/0000-0001-7581-8905
https://orcid.org/0000-0002-2812-1045
https://orcid.org/0000-0002-2812-1045
https://orcid.org/0000-0002-2812-1045
https://orcid.org/0000-0002-2812-1045
https://orcid.org/0000-0002-2812-1045
mailto:

and distributed file system layer. There are a lot of efforts in
the field to improve the performance of each of these layers.
For example, the default Caffe, TensorFlow, and CNTK can
leverage the high-performance GPU accelerators with the
co-designed efficient cuDNN [8] library, while BigDL can
efficiently run on Intel CPUs or Xeon Phi devices by utiliz-
ing the highly optimized Intel MKL [9] library or BLAS
libraries. Yahoo! researchers have proposed RDMA-based
communication in CaffeOnSpark and TensorFlowOnSpark.
Our earlier work [10], [11], [12] have proposed RDMA-
based designs for Spark and Hadoop. Even though these
work have been proposed and well studied with their tar-
geted workloads and environments, there is a lack of sys-
tematic studies on analyzing the impact of RDMA-capable
networks and CPUs/GPUs on DLoBD stacks with different
Deep Learning models and datasets. We lack understanding
the impact of these advanced hardware and the associated
efficient building blocks (e.g., RDMA, GPUDirect RDMA,
cuDNN, and MKL) on various Deep Learning aspects,
including performance, accuracy, scalability, and resource
utilization. These lead to the following broad challenges:

� How are current generation DLoBD stacks being
designed? Why do they need high-performance
communication subsystems?

� Can RDMA-based designs in DLoBD stacks improve
performance, scalability, and resource utilization on
high-performance interconnects, GPUs, and multi-
core CPUs?

� What are the performance characteristics of repre-
sentative DLoBD stacks when they run typical Deep
Learning workloads on RDMA-capable high-speed
networks?

� What kind of trends and insights can we observe in
our evaluations for performance and accuracy,
which are the two most important factors for Deep
Learning workloads?

� How much performance overhead is brought due to
the heavy layers of DLoBD stacks? What kind of
potential bottlenecks are there in the typical DLoBD
stacks?

1.2 Contribution

To address all of these challenges, this paper first selects
four representative DLoBD stacks (i.e., CaffeOnSpark,

TensorFlowOnSpark, MMLSpark, and BigDL) based on
their popularity and designs. We overview their architec-
ture differences and similarities in Section 2, which help us
to design our characterization methodology. Then, we fur-
ther propose a systematical characterization methodology
in Section 3 to cover a broad range of evaluation dimen-
sions, such as comparing different networking protocols
(i.e., IPoIB versus RDMA), comparing different ways of
integration with Big Data stacks (i.e., in-band communica-
tion versus out-of-band communication), and comparing
solutions using different computing devices (i.e., CPU ver-
sus GPU). Our characterization will focus on four different
perspectives, including performance, accuracy, scalability,
and resource utilization.

Section 4 presents our detailed evaluation, which shows
that RDMA-based DLoBD stacks can achieve up to 2.7x
speedup compared to the IPoIB based scheme. RDMA-
based designs can also scale better and utilize resources
more efficiently than the IPoIB scheme. For most cases, we
see GPU-based Deep Learning can outperform CPU-based
designs, but not always. We see that for LeNet on MNIST,
CPU + MKL can achieve better performance than GPU and
GPU + cuDNN on 16 nodes.

In addition to benchmarking these DLoBD stacks in a
black-box manner, we further provide an in-depth analysis
of TensorFlowOnSpark in Section 5. The in-depth analysis
with TensorFlowOnSpark chooses a vertical approach to
breakdown the Deep Learningworkload performance across
DLoBD layers. From the analysis, we find that up to
15.5 percent time could be spent in the Apache Hadoop
YARN scheduler layer, while up to 18.1 percent execution
time could be consumed by the Spark job execution layer.
Compared to native TensorFlow, TensorFlowOnSpark can
get the benefit of automatically scaling out Deep Learning
applications across nodes and accessing data easily from
HDFS. But in the meantime, our studies show that the com-
munitymay need to spendmore effort to reduce the overhead
of heavy DLoBD stacks, even though such kind of overhead
may be negligible in long-runningDeep Learning jobs.

From the communication perspective, the analysis in Sec-
tion 5 shows that the RDMA-based communication channel
in TensorFlow or TensorFlowOnSpark has the potential to
benefit large or complex Deep Learning models. Our evalu-
ation shows that training a ResNet50 model on TensorFlow
can get around 21 percent performance benefit with RDMA
compared to using the IPoIB protocol.

Through our evaluation and analysis, we see that there
are still large rooms to improve the designs of current gen-
eration DLoBD stacks. More insights are shared in this
paper to guide designing next-generation DLoBD stacks.
Section 6 discusses related work. We conclude the paper
with observed insights and future work in Section 7.

2 OVERVIEW OF DLOBD STACKS

There are broadly two mechanisms for parallelizing a Deep
Learning algorithm: Model Parallelism and Data Parallelism.
Model Parallelism is when the different processing elements
use the same data, but the model is distributed among them.
In the Data Parallelism, the same model is used for every
processing element, but different parts of the data are read
and processed by all processing elements in parallel. This

Fig. 1. Convergence of deep learning, big data, and HPC; Overview of
the corresponding characterization scope of DLoBD stacks.

636 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

paper focuses on data parallelism, which is more related to
system-level studies. This paper chooses four popular and
representative DLoBD stacks (i.e., CaffeOnSpark, Tensor-
FlowOnSpark, MMLSpark or CNTKOnSpark, and BigDL)
which support data parallelism to conduct the detailed
analysis. We first compare the architecture of these four sys-
tems in the following sections.

2.1 CaffeOnSpark Overview

CaffeOnSpark is a Deep Learning package designed by
Yahoo! based upon Apache Spark and Caffe. It inherits
features from Caffe like computing on CPU, GPU, and GPU
with accelerating components (e.g., cuDNN). CaffeOnSpark
enables Deep Learning training and testing with Caffe to be
embedded inside Spark applications. Such an approach
eliminates unnecessary data movement and benefits Deep
Learning from the high performance and scalability of
Hadoop and Spark clusters. For example, Flickr team
improved image recognition accuracy significantly with Caf-
feOnSpark by training with the Yahoo Flickr Creative Com-
mons 100M3 dataset.

The system architecture of CaffeOnSpark (YARN cluster
mode) is illustrated in Fig. 2a. CaffeOnSpark applications
are launched by standard Spark commands, and then
Hadoop YARN launches a number of containers for run-
ning Spark executors. After Spark executors are running,
there are two approaches to manage training and testing
data. One is the local DB-based approach, in which the
Spark driver reads database file from HDFS, loads it into
local database instance (e.g., LMDB4), and then transforms
the data inside local database into RDD. The other approach
is HDFS-based, which means that the Spark executors fetch
training and testing data directly from HDFS. However, in
the HDFS-based approach, the raw data needs to be con-
verted into sequence files or DataFrame format. After Spark
executors are running and all data are ready, Caffe engines
on GPUs or CPUs are setup within Spark executors. The
Caffe engine is then being fed with a partition of training
data (i.e., data parallelism). After back-propagation of a
batch of training examples, the Model Synchronizer will
exchange the gradients of model parameters via allreduce
style interface over either RDMA or TCP. At the end of each

Fig. 2. Architecture overview of DLoBD stacks.

3. https://webscope.sandbox.yahoo.com/catalog.php 4. https://symas.com/lmdb/technical/

LU ETAL.: DLOBD: A COMPREHENSIVE STUDYOF DEEP LEARNING OVER BIG DATA STACKS ON HPC CLUSTERS 637

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

https://webscope.sandbox.yahoo.com/catalog.php

CaffeOnSpark application, the final model will be stored on
the HDFS.

As we can see, CaffeOnSpark can integrate different
components from Deep Learning, Big Data, and HPC com-
munity to work together for solving artificial intelligence
problems. Default Caffe could not scale out efficiently, but
with the help from Hadoop YARN and Spark frameworks,
the scaling-out issue can be solved properly. In the mean-
time, by leveraging HDFS, the data sharing, locality-aware
data access, and fault tolerance can be handled automati-
cally as well. All of these are the benefits coming from the
DLoBD approach.

Another observation needs to be pointed out is that in
CaffeOnSpark, the model synchronizer is designed in a way
that it fully bypasses the default Spark data communication
or shuffle architecture. This means the parameter exchang-
ing phase is implemented in an out-of-band fashion and
there are dedicated communication channels (either RDMA
or TCP/IP based) being initialized in the model synchron-
izers. This approach needs extra effort from the community
to maintain these dedicated channels separately and it can
not take advantage of the optimizations for default Spark in
the Spark community.

2.2 TensorFlowOnSpark Overview

TensorFlow has been seen as one of the most popular Deep
Learning frameworks for both academia and industry.
Vanilla TensorFlow does not provide support for training
over Big Data stacks. SparkNet [4] and TensorFrame [13]
are some of the initial efforts in the direction but still leave a
lot to be desired regarding the features provided. Thus,
Yahoo! researchers take their experience from developing
CaffeOnSpark to come up with TensorFlowOnSpark, a
framework that enables execution of Deep Learning jobs
using TensorFlow on an existing Big Data cluster using
Spark and Hadoop YARN to distribute the training and
includes support for RDMA over high-speed networks.

TensorFlowOnSpark seamlessly integrates along with
other Spark components such as SparkSQL, MLlib, etc. in
the overall Spark ecosystem, requiring minimal changes to
default TensorFlow code. Fig. 2b presents the architecture
overview of TensorFlowOnSpark. TensorFlowOnSpark
allows Spark Executors acting as containers used to run
TensorFlow code. It provides two different modes to ingest-
ing data; QueueRunners are used to read data directly from
HDFS using built-in TensorFlow modules whereas Spark
Feeding provides the data from Spark RDDs to Spark execu-
tors, which in turn feed it to the TensorFlow core.

Similar to CaffeOnSpark, TensorFlowOnSpark also
bypasses the Spark architecture for communication (i.e.,
out-of-band communication) therefore achieving similar
scalability as standalone TensorFlow jobs. The default Ten-
sorFlow officially can support three different channels for
data communication, including gRPC, gRPC+Verbs
(RDMA), and gRPC+MPI. When utilizing RDMA, tensors
are written directly to the memory of remote processes
bypassing kernel space. This design provides considerable
performance boost compared to the default gRPC design.
One different design compared to the architecture of Caf-
feOnSpark is that TensorFlowOnSpark is based on the
Parameter Server approach. The parameter server(s) will be

setup embedded inside one or some Spark executor(s) and
talk to other tensors over gRPC, gPRC with RDMA, or
gRPC with MPI.

Aswe can see here, TensorFlowOnSpark can also integrate
different components from Deep Learning, Big Data, and
HPC community, even though there are some differences in
the architecture compared to CaffeOnSpark. More in-depth
analysis about TensorFlowwill be discussed in Section 5.

2.3 MMLSpark Overview

MMLSpark (or CNTKOnSpark), proposed by Microsoft, is a
powerful toolkit for Apache Spark in accelerating Deep
Learning and data science. It turns parallelizable algorithms
from external libraries (e.g., Microsoft Cognitive Toolkit
and OpenCV) into Spark Machine Learning pipelines with-
out data transfer overhead, therefore enables one to quickly
create powerful, high-scalable predictive and analytical
models for large image and text datasets.

Vanilla MMLSpark is designed for Microsoft Azure Clus-
ter and can be installed on Azure HDInsight Spark Cluster
conveniently with user-friendly documents. However, we
take some efforts to make it work on top of HDFS instead of
Windows Azure Storage Blob (WASB) and compatible with
the HPC cluster used for evaluation. Similar as CaffeOnS-
park and TensorFlowOnSpark, MMLSpark can also run
over Big Data Stacks, like Hadoop YARN, Spark, and HDFS.

The architecture of MMLSpark is depicted in Fig. 2c. The
feeding data for CNTK Core (e.g., images or texts) can be
directly read from HDFS by Spark Executors. The CNTK
Model loads pre-trained model and distributes the model to
multiple workers for parallel evaluation. Similar to Caf-
feOnSpark and TensorFlowOnSpark, MMLSpark employs
out-of-band communication (e.g., bypassing the Spark
architecture) approach in exchanging model parameters
among multiple workers for parallel model evaluation. The
out-of-band communication is implemented with MPI
library, so that users can specify the employed communica-
tion channel (e.g., TCP/IP or RDMA) in compiling stage or
runtime depending on which MPI library is chosen to run
with. In this paper, MMLSpark is compiled with OpenMPI
library since the MMLSpark package has been tightly cou-
pled with OpenMPI. The communication channel is
switched between IPoIB and RDMA through configuring
the Byte Transfer Layer (btl) in OpenMPI runtime.

2.4 BigDL Overview

BigDL is proposed by Intel to provide a high-performance
and distributed Deep Learning runtime which makes effi-
cient use of Intel processors and co-processors (such as Intel
Xeon Phi). BigDL uses Spark to scale out to multiple pro-
cesses. It allows users to import models already trained
using Caffe and Torch into the Spark framework, which is
then used to pipe the models to the BigDL runtime. BigDL
is written using Intel’s Math Kernel Library (MKL) which
provides optimized support for vector primitives frequently
used in Deep Learning applications. Therefore, it signifi-
cantly outperforms most Deep Learning frameworks out-of-
the-box on a single node Intel Xeon Phi processor.

Fig. 2d shows the architecture of BigDL is also based on
Parameter Server that is organically designed with Spark
Block Manager component. The Spark Block Manager is

638 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

heavily involved in the Spark Shuffle architecture. The feed-
ing data to BigDL core is ingesting by Spark Executor which
can directly load data from HDFS. Parameter updates of the
training model (i.e., major communication phase) are
exchanged among BigDL cores through parameter server
which is based on Spark shuffle architecture. We call this
kind of parameter exchanging approach as in-band commu-
nication, which is different than the out-of-band approach
(i.e., bypass Spark shuffle) applied in CaffeOnSpark, Ten-
sorFlowOnSpark, and MMLSpark. In other words, the in-
band communication approach directly utilizes the Spark
shuffle engine to synchronize the model. By default, BigDL
on Spark does not support RDMA-based model synchroni-
zation because the default Spark does not support RDMA-
based shuffle. However, our recent work [10] can support
native verbs-based high-performance RDMA shuffle in
Spark, which can be used to fill this gap for BigDL. This can
also be seen as the benefit of choosing in-band communica-
tion approach. With in-band communication approach, the
BigDL framework can automatically utilize all kinds of opti-
mizations in Spark core (like the RDMA-based shuffle
engine), which are available in the Spark community. On
the other hand, with in-band communication, the BigDL
researchers and developers do not need to maintain their
separate communication channels or subsystems.

2.5 Summary

To summarize, these four DLoBD stacks are designed differ-
ently, and all of them can take advantage of modern HPC
technologies (e.g., multi-core CPUs, GPUs, RDMA, etc.) in
varied ways to boost Deep Learning performance. In the
meantime, all of them can run on top of the same Big Data
stacks (i.e., Spark, Hadoop). These commonalities, as well as
their differences, make us choose them to represent a broad
range of DLoBD stacks to be investigated in this paper.

3 CHARACTERIZATION METHODOLOGY

This section describes our proposed characterization meth-
odology on evaluating DLoBD stacks.

3.1 Methodology Overview

To systematically characterize DLoBD stacks, we propose a
holistic evaluation methodology as shown in Fig. 3. The
characterization methodology comprises four main aspects.
First of all, we conduct an extensive survey on selecting the
typical Deep Learning workloads, including popular Deep
Learning models and open datasets. We need to make sure
the selected models have varied sizes to cover big and small

models. Similarly, for datasets, we need to choose both
small and large ones. Thus, we could cover different kinds
of combinations, such as training varied-size models on
both small and large datasets, which could expose more dif-
ferent characterization trends. Since the importance of
workload selection, we will give detailed descriptions on
selected benchmarks and datasets in Section 3.2.

Second, as discussed in Section 2, we choose to run the
Deep Learning workloads on four DLoBD stacks (i.e., Caf-
feOnSpark, TensorFlowOnSpark, MMLSpark, and BigDL).
These four stacks can run on the same underlying environ-
ment, including Spark engine, YARN scheduler, and HDFS
file system, which are the most popular components for Big
Data processing. The evaluations on these stacks will give
bigger impact to more researchers and developers in this
community.

Third, to organize the experiments properly, we fully take
into account three major evaluation dimensions, such as pro-
cessor type, network protocol, and communication approach
in different stacks. For processor type, we first verify the
effect of powerful computing accelerators (such as NVIDIA
GPU) and multi-core CPUs (such as Intel Broadwell and
Haswell) on DLoBD stacks. We want to find out with the
highly optimized libraries on GPUs (e.g., cuDNN) and CPUs
(e.g., Intel MKL), how will DLoBD stacks perform with typi-
cal Deep Learning workloads? For network protocol, we
focus on investigating the impact of IPoIB and RDMA on
Deep Learning workloads. CaffeOnSpark and TensorFlo-
wOnSpark have RDMA support by default, MMLSpark can
leverage RDMA-based MPI library, while BigDL can run
with our designed RDMA-Spark [10] to support RDMA-
based Deep Learning. Thus, through evaluating these four
stacks, we can assess the benefits of RDMA with different
RDMA-based communication engine designs for Deep
Learning workloads. For the communication approach, we
characterize both out-of-band (i.e., CaffeOnSpark, Tensor-
FlowOnSpark, and MMLSpark) and in-band (i.e., BigDL)
based communication subsystem designs in DLoBD stacks.

Last but not least, we need to show evaluation reports
and analysis in detail based on all the evaluations. Even
though the performance is the most important metric in our
evaluation, we also care about other metrics, such as accu-
racy, scalability, and resource utilization. For performance,
we will explore three major factors: 1) end-to-end model
training and testing time (i.e., benchmark job execution
time), 2) consumed time to reach a certain accuracy, and 3)
epoch-level execution time. We believe all these factors and
metrics are the major aspects for characterizing Deep Learn-
ing workloads. From our detail reports, we also want to

Fig. 3. Evaluation methodology.

LU ETAL.: DLOBD: A COMPREHENSIVE STUDYOF DEEP LEARNING OVER BIG DATA STACKS ON HPC CLUSTERS 639

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

excavate more observations to guide designing efficient
next-generation DLoBD stacks.

3.2 Benchmarks and Data Sets

To characterize DLoBD stacks, we have chosen three popu-
lar datasets: MNIST,5 CIFAR-10,6 and ImageNet,7 which
have different categories, resolutions, classes or scales as
shown in Table 1.

MNIST consists of 70K black and white handwritten digit
images, which have been size-normalized and centered in a
fixed-size 28 � 28. Even though the focus of research has
moved on to othermuchmore challenging image recognition
problems, the fast speed of training on the MNIST dataset
meansthatit isstillaproperproblemforevaluationpurpose.

CIFAR-10 has 50 K training images and 10K test images,
which are 32 � 32 RGB images in ten classes. The ten classes
include airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. Nearly all Deep Learning frame-
works use the CIFAR-10 dataset as one example, and there
are many accuracy results reported publicly on it. Hence,
the CIFAR-10 dataset is one of the most popular choices to
evaluate object recognition algorithms.

ImageNet refers to the dataset for ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2012. As in 2012, the
ILSVRC competition involved a training set of 1.2 million 256
� 256 color images, in 1,000 categories. The ImageNet prob-
lem is one of the most challenging object recognition prob-
lems for modern computer vision research and Deep
Learning research. Because of the long lasting training time of
complex models on the ImageNet dataset, evaluating Deep
Learning frameworks on it becomes one of the best choices.

Based on the selection of datasets, we use seven well-
known trained models: LeNet [14], SoftMax Regression [15],
CIFAR-10 Quick,8 VGG [16], AlexNet [17], GoogLeNet [18]
and ResNet [19]. These models, as depicted in Table 2, dif-
fering in general architecture and dataset, may offer differ-
ent insights in the evaluation of DLoBD stacks. The
combinations of models and datasets are illustrated in
Table 2, which can generally be grouped into three catego-
ries: 1) Simple and “shallow” model with small dataset,
such as LeNet with MNIST dataset and CIFAR-10 Quick
with CIFAR-10 dataset, 2) Complex and “deep” model with
small dataset, like VGG with CIFAR-10, and 3) Complex
and “deep” model with large dataset, e.g., AlexNet and
GoogLeNet with ImageNet dataset. Among all these

models, only ResNet is trained on the synthetic data gener-
ated by the TensorFlow CNN benchmark.9 The script gener-
ates synthetic data similar to the data expected by ResNet
for ImageNet dataset.

Generally speaking, there are not so many parameters
involved in simple and “shallow” models. For example, the
LeNet model has total 431 K weights. On the other hand,
complex and “deep” models will generate tons of parame-
ters during training time. GoogLeNet, a 22-layer model
with complicated Inception modules performing different
sizes of convolutions, outputs 7 million weights in all layers.
In DLoBD stacks, those model parameters need to be
exchanged among all workers. Thus, the model complexity
influences the performance of communication subsystem in
DLoBD stacks significantly. With the purpose of evaluating
DLoBD stacks, we finally select these models, and their
detailed descriptions can be found in Table 2. In this table,
we also indicate which dataset is used for each model in
this paper and which framework has the corresponding
model implementation in their official distributions. With
our survey, we believe that this paper has covered a large
range of available various models and datasets in the Deep
Learning community.

4 PERFORMANCE EVALUATION

This section presents detailed characterization results.

4.1 Experimental Setup

(1) OSU RI2 Cluster (Cluster A): The RI2 cluster at The
Ohio State University comprises 20 nodes connected
via Mellanox single port InfiniBand EDR (100 Gbps)
HCA. Each node is equipped with two Intel Broad-
well (E5-2680-V4) 14-core processors, 128 GB RAM,
120 GB local HDD, and NVIDIA Tesla K80 GPU.

(2) SDSC Comet Cluster [20] (Cluster B): The Comet
supercomputing system at San Diego Supercom-
puter Center (SDSC) has 1,984 nodes. We use up to
17 nodes in the evaluation. Each node is provisioned
with Intel Haswell (E5-2680-v3) dual twelve-core
processors, 128 GB RAM, 320 GB local SSD. The net-
work topology of Comet is FDR (56 Gbps) InfiniBand
with rack-level full bisection bandwidth and 4:1
oversubscription cross-rack bandwidth.

Table 3 describes all used software for four differ-
ent stacks and which cluster is used for the evalua-
tion. For experiments in this section, if not specified,
the number of nodes and batch size have such a rela-
tion: #node � batch size ¼ 128.

4.2 Evaluation on CPU versus GPU

To characterize the performance of CPU and GPU based
Deep Learning solutions on DLoBD stacks, we conduct four
kinds of experiments on Cluster A with the CIFAR-10 Quick
model on the CIFAR-10 dataset and the LeNet model on the
MNIST dataset: 1) CPU + OpenBLAS, 2) CPU + MKL, 3)
GPU, and 4) GPU + cuDNN. For these experiments, we first
run them with IPoIB protocol to expose possible

TABLE 1
Image Classification Datasets

MNIST CIFAR-10 ImageNet

Category Digit Object Object
Classification Classification Classification

Resolution 28 � 28 B&W 32 � 32 Color 256 � 256 Color
Classes 10 10 1,000
Training Images 60 K 50 K 1.2 M
Tesing Images 10 K 10 K 100 K

5. http://yann.lecun.com/exdb/mnist/
6. https://www.cs.toronto.edu/�kriz/cifar.html
7. http://www.image-net.org
8. https://github.com/yahoo/CaffeOnSpark/blob/master/data/

cifar10_quick_train_test _prototxt 9. https://github.com/tensorflow/benchmarks

640 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/
http://www.image-net.org

communication bottlenecks. As shown in Fig. 4, the scale of
experiment cluster is up to 16 nodes, with one device (CPU or
GPU) used per node in training and testing models. The End-
to-End time consumed by experiments, as represented by the
y-axis in the figure, includes training time and testing time.

The results of CIFAR-10 Quick experiments with Caf-
feOnSpark are shown in Fig. 4a. The leftmost bars depict
the performance of these solutions on one node, which
means no communication overhead is involved in. We
observe that the solution of CPU + MKL has a 63 percent
performance improvement compared with that of CPU +
OpenBLAS. This makes sense as the Intel MKL library takes
advantage of special features provided by Intel CPUs like
Intel AVX2 that greatly speed up matrix calculations. While
GPU without cuDNN is 323.6 percent faster than CPU +
MKL, and 1723.5 percent faster if cuDNN is deployed.
However, once we scale the cluster larger than one node,
which indicates that more communication is introduced
into, the situation becomes complicated. The slower solu-
tions, such as CPU + OpenBLAS, CPU + MKL, and GPU,
will benefit from the scalability of DLoBD stacks, and
finally, reach the bottleneck of the network. From the quan-
titative perspective, compared with the performance on one

node, CPU + OpenBLAS on 16 nodes has a 78.3 percent per-
formance improvement, while 41.5 percent for CPU + MKL,
and 15.9 percent for GPU. On the other hand, the perfor-
mance of the fastest solution, e.g., GPU + cuDNN, is
degraded while the DLoBD stack is run at a larger scale,
which means for the case with fast Deep Learning library
like cuDNN, we need to exploit the powerful local compu-
tation capability on GPU as much as possible rather than
blindly scaling it out.

For LeNet experiments with CaffeOnSpark, Fig. 4b
shows a different observation that CPU + MKL performs
better than GPU and GPU + cuDNN on 8 and 16 nodes.
These results indicate two insights. First, the CPU + MKL
based solution can perform well on Intel processors for
Deep Learning models. Second, the design of the communi-
cation library (for TCP/IP-based communication, i.e., IPoIB)
used in synchronizing model parameters among CPUs has
less overhead, at least for training LeNet model, than the
one used among GPUs. More specifically, for training LeNet
model on one node, CPU +MKL improves 81.3 percent than
CPU + OpenBLAS and is worse than GPU by 1.68x and
GPU + cuDNN by 5.8x. But if the same job is running on 16
nodes, the overall time is reduced by 5.02x and 2.43x for
CPU + OpenBLAS and CPU + MKL, respectively. For GPU
and GPU + cuDNN, however, the overall time is increased
by 2x and 5.92x, respectively. This is also similar to the
observed trend of CIFAR-10 results.

While in CIFAR-10 experiments with MMLSpark, there
are no results for the basic GPU case in Fig. 4c, since CNTK
must be compiled with cuDNN if CUDA is enabled. For sin-
gle node experiments, similar to CIFAR-10 Quick experi-
ment with CaffeOnSpark, the solution of GPU + cuDNN
performs best, 55x faster than CPU + OpenBLAS, and 15x
faster than CPU + MKL. As aforementioned, once the scale
of the cluster becomes larger, there will be extra communi-
cation occurring among multiple nodes. The same insight
as with CaffeOnSpark is observed in the experiments with
MMLSpark that slower solutions (e.g., CPU + OpenBLAS,
CPU + MKL) benefit from the scalability of DLoBD stacks,

TABLE 2
Selected Deep Learning Models and Algorithms

Model Layers (Convolutional/
Full-connected)

Dataset Description Framework

LeNet 2 / 2 MNIST A CNN designed for handwritten and
machine-printed character recognition

CaffeOnSpark,
TensorFlowOnSpark

SoftMax
Regression

NA / NA MNIST
A logistic function that compresses a vector
to another vector of real values in the range

(0, 1) that add up to 1

TensorFlowOnSpark

CIFAR-10 Quick 3 / 1 CIFAR-10 A model reproduced from Alex Krizhevsky’s
cuda-convnet

CaffeOnSpark,
TensorFlowOnSpark,

MMLSpark

VGG-16 13 /3 CIFAR-10 A deep convolutional network for object
recognition

BigDL

AlexNet 5 / 3 ImageNet

A CNN architecture designed to deal with
complex object classification task, won

ILSVRC 2012
CaffeOnSpark

GoogLeNet 22 /0 ImageNet A CNN architecture with an Inception
module, won ILSVRC 2014

CaffeOnSpark

ResNet 53 /1 Synthetic A deep convolutional network based on
residual learning framework

TensorFlow

TABLE 3
Used Software and Clusters

Stack Software Cluster

CaffeOnSpark Java-7 Python-2.7 A
(master branchy) Spark-1.6 Hadoop-2.6.5

TensorFlowOnSpark (1.0) Java-8 Python-2.7 A
Spark-2.1 Hadoop-2.7.3

MMLSpark (0.10) Java-8 Python-2.7 A
Spark-2.2.0 Hadoop-2.7.3

BigDL Java-8 Scala-2.11 B
(master branchz) Spark-2.1 Hadoop-2.7.3

y Commit hash: 19df500abe3f0d09511b6434a0ea0bb52a6e8124.
z Commit hash: a1f3a88517b1b41a9d3554b8715987c66edccfb7.

LU ETAL.: DLOBD: A COMPREHENSIVE STUDYOF DEEP LEARNING OVER BIG DATA STACKS ON HPC CLUSTERS 641

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

and yet the performance of faster solutions (e.g., GPU +
cuDNN) is degraded by the overheads introduced by com-
munication. Quantitatively, the performance of GPU +
cuDNN degrades by up to 49.7 percent at a scale of 16
nodes, while the performances of CPU + OpenBLAS and
CPU + MKL are improved by 88.8 and 37.9 percent, respec-
tively. However, we observe that CPU + OpenBLAS outper-
forms CPU + MKL with more than two nodes, which is not
demonstrated in experiments with CaffeOnSpark. This
could be because CNTK core may use OpenBLAS in a more
efficient manner than CaffeOnSpark.

As we can see, Deep Learning frameworks can benefit
from the high performance of the DLoBD stacks, even
though the overall performance will reach the network bot-
tleneck at some point if we use the sub-optimal IPoIB net-
work protocol. For some cases, solutions with CPU + MKL
could outperform GPU-based solutions depending not only
on the model, but also on the scale of the system.

4.3 Evaluation on IPoIB versus RDMA

For evaluating DLoBD stacks with IPoIB and RDMA, we
conduct three experiments on Cluster A for CaffeOnSpark,
TensorFlowOnSpark, and MMLSpark, respectively.

The results of experiments on CaffeOnSpark, presented
in Fig. 5a, show that CaffeOnSpark indeed has communica-
tion overhead at the scale of 16 nodes for training CIFAR-10
Quick model over both IPoIB and RDMA, and for training
LeNet model over IPoIB. Our observation, however, indi-
cates that CaffeOnSpark benefits from the high performance
of RMDA compared to IPoIB once communication overhead
becomes significant. To be quantitative, the overall perfor-
mance of 16 nodes is improved by 14.2 and 13.3 percent
with employing RDMA instead of IPoIB in training CIFAR-
10 Quick model with GPU and GPU + cuDNN, respectively.
The performance is also improved by 51.2 and 45.6 percent
for training LeNet model with GPU and GPU + cuDNN
over RDMA, respectively.

The results of experiments on TensorFlowOnSpark are
presented in Fig. 5b. For CIFAR10 example, we try to scale
the single-node, multi-GPU example provided to multi-
node, multi-GPU cluster. For this benchmark, RDMA out-
performs IPoIB by a significant margin (53.8 percent for 8
GPUs). We can do so for up to 8 GPUs, but beyond that, it
could not scale and seems to be running into a race condi-
tion (as identified by one of the TensorFlowOnSpark devel-
opers10) which causes it to crash. The MNIST example
provided by TensorFlowOnSpark uses SoftMax Regression
model. We observe that for the smaller number of nodes,
RDMA outperforms IPoIB by about 4.9 percent, but as we
scale to more number of nodes, the performance of RDMA
is slightly worse than IPoIB. Moreover, scaling it beyond
four nodes causes the job hangs indefinitely. Because of
this, further performance numbers could not be taken.
These observations suggest that the RDMA design in Ten-
sorFlowOnSpark is not fully optimized yet.

From these tests, it appears that TensorFlowOnSpark is
a recent step in the right direction. Architecturally it
seems to be better designed compared with CaffeOnS-
park. However, the implementation for TensorFlowOnS-
park is not stable yet, and the examples provided so far
have not been designed to scale to multi-node multi-GPU
clusters. We believe with the continued effort in this proj-
ect, TensorFlowOnSpark can become a major player in
the DLoBD community. On this front, we provide an in-
depth analysis in Section 5 to further understand the
internals of TensorFlowOnSpark and the performance
bottlenecks.

For MMLSpark, as discussed in Section 2.3, its communi-
cation performance heavily depends on the underlying MPI
library. We choose OpenMPI 1.10.3 for our experiments as it
is the default dependent library for MMLSpark. Fig. 5c
depicts the results of CIFAR-10 experimentswithMMLSpark

Fig. 4. Performance comparison for CPU-/GPU-based deep learning with CaffeOnSpark and MMLSpark (Cluster A).

Fig. 5. Performance comparison for IPoIB and RDMA with CaffeOnSpark, TensorFlowOnSpark and MMLSpark (Cluster A).

10. https://github.com/yahoo/TensorFlowOnSpark/issues/81#issu

642 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

at various scales, which indict that the performance of
training over IPoIB is comparable with that of training
over RDMA. During the experiments, we monitor the net-
work usage, which helps us verify the communication
channel utilized by MMLSpark. We do observe that pack-
ages go through IPoIB and RDMA respectively for differ-
ent experiments, even though the times consumed by
training stages of IPoIB and RDMA are nearly the same.
The possible reason is that the latency and bandwidth of
IPoIB in Cluster A are sufficient for exchanging such an
amount of parameters among multiple CNTK instances
during training CIFAR-10 model in parallel. However, we
cannot verify this reason by training different models as
we do not find other available benchmarks to evaluate
MMLSpark. To propose useful benchmarks for MMLSpark
or other DLoBD stacks could be a potential research direc-
tion for the community.

4.4 Evaluation on Performance and Accuracy

To characterize the performance and accuracy of DLoBD
stacks with IPoIB and RDMA, three well-known and trained
Deep Learning models, such as AlexNet, GoogLeNet and
VGG are chosen. Because of the model and dataset combi-
nation strategy as mentioned in Section 3.2, three kinds of
experiments are designed: 1) AlexNet + ImageNet, 2) Goo-
gLeNet + ImageNet, and 3) VGG + CIFAR-10. The Image-
Net referred in this section is a subset consisting of the first
ten classes of ILSVRC12 training and validation dataset.
Such a choice is because of the physical hardware limita-
tions on Cluster A. In the three experiments, training time
to achieve a 70 percent accuracy is the only factor to evalu-
ate the performance of CaffeOnSpark and BigDL. For Caf-
feOnSpark, Figs. 6a and 6b depict that replacing IPoIB with

RDMA reduces the overall time cost by 22 and 15 percent in
training AlexNet on ImageNet and training GoogLeNet on
ImageNet, respectively.

Fig. 6c shows the performance and accuracy comparison
of training VGG model using BigDL on default Spark with
IPoIB and our Sparkwith RDMA. These tests are run onClus-
ter B. While running BigDL on our RDMA Spark, we observe
that the model reaches an accuracy of 70 percent in 2,132 sec-
onds. On the other hand, when the default Spark on IPoIB is
used with BigDL, VGGmodel achieves the same accuracy in
4,337 seconds. Therefore, with the help of RDMA, we can
reach the same accuracy in 48 percent less time than IPoIB.
As the nature of training Deep Learning models like VGG is
communication intensive, RDMA provides a superior solu-
tion to train amodelwhen compared to IPoIB.

4.5 Epoch-Level Evaluation

In neural network terminology, an epoch can be described
as one pass of all the training examples. Fig. 7a shows the
epoch level evaluation of training VGG model, on Cluster B,
using BigDL on default Spark with IPoIB and our Spark
with RDMA. For each epoch, it includes computation
(model local training) time and communication time (model
synchronization). For these experiments, the total number
of CPU cores used is 192, and the batch size is 768. The
epoch level evaluation gives a clear picture of the perfor-
mance comparison of training Deep Learning model with
IPoIB and RDMA from the systems perspective. As we can
see from Fig. 7a, to finish every epoch, RDMA version takes
constantly less time than the IPoIB version. For example,
RDMA can reach the end of epoch 18 in 2.6x time faster
than IPoIB. This is because with RDMA, the DLoBD stack
can perform much faster communication for model

Fig. 6. Performance and accuracy comparison of CaffeOnSpark (Cluster A) and BigDL (Cluster B) with IPoIB and RDMA.

Fig. 7. Epoch-level and scalability evaluation with BigDL (Cluster B).

LU ETAL.: DLOBD: A COMPREHENSIVE STUDYOF DEEP LEARNING OVER BIG DATA STACKS ON HPC CLUSTERS 643

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

synchronization than the IPoIB scheme. Thus, RDMA shows
much faster progress to reach a certain accuracy.

Interestingly, compared to the time saving (i.e., up to 48
percent) of reaching a certain accuracy, we see higher (i.e.,
2.6x) performance improvement with RDMA for epoch-
level evaluation. From these numbers, we see that it is
important to understand the way how the benefits are
reported in Deep Learning related studies, since using dif-
ferent metrics may show quite different numbers.

4.6 Scalability Evaluation

Fig. 7b shows the scalability evaluation of training VGG
model on Cluster B by using BigDL on default Spark with
IPoIB and on our Spark with RDMA. The figure shows the
accumulative time taken to finish the 18th epoch when dif-
ferent numbers of CPU cores are used. We run these tests
on (up to) 17 nodes (16 worker nodes and one master node).
We observe that when our RDMA spark is used with BigDL
to train VGG model, the system scales better than the case
when default IPoIB Spark is used with BigDL. Besides, from
Fig. 7b, we see with 384 CPU cores and same batch size,
RDMA can finish epoch 18 in around 870 seconds. On the
other hand, IPoIB takes 2,372 seconds to finish the same
number of epochs with the same configuration. Therefore,
with RDMA, we can achieve up to 2.7x speedup for the
epoch-level training time.

4.7 Evaluation on Resource Utilization

In this section, we first compare two kinds of resource utili-
zation based on the monitoring results in training CIFAR-10
Quick model on the CIFAR-10 dataset with CaffeOnSpark
on Cluster A: 1) Network Utilization, 2) Host Memory Utili-
zation. Both utilization results are generated with the aver-
age resource consumption per time window of 60 seconds.
As shown in Fig. 8a, the RDMA-based design utilizes the
network resource more efficiently than the IPoIB-based
communication in CaffeOnSpark. The communication
library inside CaffeOnSpark benefits from the lower latency
and higher achieved throughput of RDMA. It, however, still
does not fully utilize the high throughput characteristic of
RDMA based on Fig. 8a, which should be more beneficial to
DLoBD stacks.

Fig. 8b presents the host memory utilization during train-
ing. The twoGPU-based solutions consume less hostmemory
than the two CPU-based solutions because theymostly utilize
GPU memory. The CPU + MKL solution uses host memory

more efficiently and effectively, so it has better performance
than CPU + OpenBLAS. In our experiments, we observe that
1.5 GB and 10.9 GB GPU memory are consumed in training
with CaffeOnSpark and TensorFlowOnSpark, respectively.
The GPU memory utilization is monitored by the command
nvidia-smiwith a timewindow of 20 seconds. From the results
represented in Fig. 8b, we can see that so far, none of these
frameworks can utilize both CPU andGPUmemory fully and
efficiently, which means there is huge performance improve-
ment potential for the community to explore.

5 IN-DEPTH ANALYSIS OF TENSORFLOWONSPARK

Section 4 presents performance characterization of DLoBD
stacks almost in a black-box manner. In this section, we fur-
ther provide an in-depth analysis of TensorFlowOnSpark.
We choose TensorFlowOnSpark mainly because Tensor-
Flow has been widely used in many scenarios and we also
want to understand the internals of TensorFlowOnSpark. In
this section, we focus on two broad analysis aspects. 1) How
much performance overhead is brought due to the heavy
layers of DLoBD stacks? 2) How the existing communica-
tion subsystem being designed in TensorFlow or TensorFlo-
wOnSpark? Are there any potential bottlenecks?

5.1 Understanding Performance Overhead
of TensorFlowOnSpark

As depicted in Fig. 2b, TensorFlowOnSpark does not involve
Spark drivers in tensor communication. Thus it enables
direct tensor communication among different TensorFlow
processes such asworkers and parameter servers. TensorFlo-
wOnSpark can easily scale by leveraging this Process-to-Pro-
cess communication. In this way, TensorFlowOnSpark could
achieve similar scalability and performance as stand-alone
TensorFlow. However, in our performance comparison
between TensorFlowOnSpark and native (stand-alone) Ten-
sorFlow, we find that there indeed has some overhead
involved in different layers of DLoBD stacks.

Fig. 9 shows the time spent in different phases of training
in TensorFlowOnSpark and Native TensorFlow, respec-
tively. For this experiment we run the SoftMax Regression
model, overMNIST dataset, on a four-node parameter server
based cluster, including one parameter server and three
workers. Current TensorFlowOnSpark is not matured yet
and it runs into some issues if we try to run a larger training
job. We keep the batch size 128 and use CPU for the actual
training. Aswe can see from this figure, TensorFlowOnSpark

Fig. 8. Resource utilization comparison (Cluster A).

644 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

spends up to 15.5 percent time in Apache Hadoop YARN
scheduler layer, and up to 18.1 percent execution time in
Spark job execution layer. We breakdown the times spend
in different stages through careful logging and log analysis
in different components of TensorFlowOnSpark. We verify
these numbers in multiple rounds of tests. From these
numbers, we see some performance overhead in both
YARN scheduler and Spark execution layer. Since the data
size is small, we do not count the time spent on accessing
HDFS layer. On the other hand, the Native TensorFlow
does not suffer from this extra overhead. These results
also indicate that the community may need more effort to
reduce this kind of overhead across different layers of
DLoBD stacks.

However, note that this overhead can be amortized in
long-running Deep Learning jobs, which are the typical
cases for many Deep Learning applications. For instance,
some Deep Learning models may be trained for many hours
or even several days. In these cases, this overhead could be
negligible. Not surprisingly, we observe that the actual
training time remains similar for both TensorFlowOnSpark
and native TensorFlow. This is because TensorFlowOnS-
park does not involve Spark core components in tensor
communication and it is still mainly relying on the available
communication mechanisms in native TensorFlow.

Moreover, from Fig. 9, we notice that RDMA does not
improve the training time (about 4 percent)much for this case

(i.e., SoftMax Regression model over MNIST dataset). The
primary reason is that SoftMax Regression model is simple
and thus does not involve toomany data-intensive parameter
updates. To further understand the difference between the
IPoIB-based communication scheme with gRPC and the
RDMA-based communication channels (i.e., with Verbs and
MPI) in TensorFlow, we further performmore internal analy-
sis in TensorFlow codebase and experimentswith native Ten-
sorFlow, as described in the following section.

5.2 Understanding Communication Performance
in TensorFlowOnSpark

TensorFlow can use gRPC, gRPC+Verbs, and gRPC+MPI
based channels for Process-to-Process tensor communica-
tion. Fig. 10a shows tensor transfer over gRPC (over TCP/
IP or IPoIB) channel. TensorFlow uses a rendezvous proto-
col for tensor transmission. As shown in this figure, the TF
(TensorFlow) worker and PS (Parameter Server) resides on
different Spark Executors. The Sender (TF PS in this sce-
nario) always puts the tensors in the local table, whereas the
receiver (TF worker) actively requests for the tensor only
when it is needed. The default gRPC core uses sendmsg

and recvmsg primitives for sending and receiving pay-
loads. These primitives are useful for sending or receiving
from one or more buffers in a single function call. Tensor-
FlowOnSpark directly uses gRPC ByteBuffer to generate the
tensor response to avoid extra protocol buffer serialization
overhead. From Fig. 10a, we see that the communication
path is pretty clean and only one round trip gets involved,
which is a good design for TCP/IP protocol. However, for
RDMA-capable high-speed networks (like InfiniBand), this
design may incur a lot of performance overhead due to the
internal buffer copies and context switches, which have
been discussed in other related studies [10], [21].

For efficient tensor communication on high-performance
networks such as InfiniBand and RoCE, among different
processes, TensorFlowOnSpark can use a Verbs-based chan-
nel. Fig. 10b represents the Verbs-based tensor communica-
tion in TensorFlowOnSpark, from TF Worker to TF PS. The
Verbs-based channel transfers all the payloads by employ-
ing an RDMA Write operation. TF Worker and PS maintain
a set of several pre-pinned RDMA buffers for a Process-
to-Process communication. These buffers include two mes-
sage buffers, two ACK buffers, and many tensor buffers.

Fig. 9. Performance analysis of TensorFlowOnSpark and native Tensor-
Flow (Lower Better).

Fig. 10. Analysis of tensor transfer over gRPC channel and verbs channel in TensorFlowOnSpark and native TensorFlow.

LU ETAL.: DLOBD: A COMPREHENSIVE STUDYOF DEEP LEARNING OVER BIG DATA STACKS ON HPC CLUSTERS 645

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

Tensor buffers are allocated once at the beginning, and then
reused across all training steps of a TensorFlow job to mini-
mize tensor buffer creation. However, when the tensor size
increases, the current tensor buffer is discarded and a new
buffer of larger size is created and pinned. Upon requesting
a tensor, TF Worker sends a message to notify the TF PS. TF
PS first sends an ACK so that TFWorker can set the message
buffer idle. Then TF PS finds the tensor locally and places at
corresponding RDMA tensor buffer for transmission.

From Fig. 10b, we see that the Verbs-based RDMA com-
munication channel could use the RDMA-capable networks
in a muchmore efficient manner than the IPoIB protocol. But
it seems like too many communication round trips being
involved in the default RDMA design in TensorFlow, which
may incur some performance overhead, especially for small
message transfers in small model based training. This could
be another reason why we do not see too much performance
benefit with RDMA in the experiments of Fig. 9. Moreover,
TensorFlow has support for MPI-based channel that can
leverage RDMA-capable networks for tensor transfers. The
communication flow for the MPI-based channel is similar as
the flow shown in Fig. 10b. Instead of directly using Verbs-
based RDMA operations, the MPI-based design in Tensor-
Flow uses MPI_Isend, MPI_Improbe, MPI_MRecv etc.
MPI calls to implement the communication flow. To avoid
repetition, we do not show the corresponding communica-
tion flow figure for theMPI channel in this paper.

To further understand the impact of RDMA in Tensor-
Flow, we train a more complex deep neural network. We
choose ResNet50 [19] for this experiment available in Tensor-
Flow CNN Benchmark. We keep the batch size 64 and use
GPU for training. We use 2, 4 and 8 nodes (2 GPUs per node)
TensorFlow cluster deployed in parameter server (1 PS and
rest workers) mode. The training data is generated by the
script in the CNN benchmark suite and the performance is
measured in terms of images processed per second. Fig. 11
shows the results of these experiments. From this figure, we
see that TensorFlow processes around 8 percent (2 nodes), 15
percent (4 nodes), and 21 percent (8 nodes) more images
when RDMA channel is used compared to the scheme of
using IPoIB. However, in our experiments we see the MPI-
based (tried with both MVAPICH2-2.3b and Intel-MPI-2018)
channel performance is similar to the IPoIB channel. The
main reason behind these numbers is that the current design
of the MPI-based channel in TensorFlow could not use MPI
in the best manner. There is a big room for further improve-
ments in theMPI-based channel.

We could not run the same benchmark with TensorFlo-
wOnSpark in Section 5.1, as this CNN benchmark is not
available for TensorFlowOnSpark yet.

From the above experiments, we have the following key
observations: 1) For complex deep neural network models,
we observe RDMA contributes clear benefit for TensorFlow
performance. 2) As we increase the number of worker nodes
(like from 2 to 8), RDMAcan delivermore performance bene-
fit than IPoIB. 3) As observed for both Verbs-based andMPI-
based channel performances, designing the communication
substrate for TensorFlow in such a way that fully leverages
RDMA capabilities also plays an important role. These
experimental results indicate that for complex deep neural
network models deployed in a larger scale, where the Pro-
cess-to-Process communication is more frequent during the
training time, RDMA can improve TensorFlow performance.

6 RELATED WORK

We summarize and discuss the related work along the fol-
lowing four different categories.

Deep Learning over Big Data Stacks. TensorFlowOnSpark,
CaffeOnSpark, MMLSpark, and BigDL have already been dis-
cussed in Section 2. However, there have been other efforts in
this direction aswell. DL4J [5] is an effort to bringDeep Learn-
ing to the enterprise,which already has a lot of resources dedi-
cated to a JVM based setup. SparkNet [4] enables users to run
TensorFlow jobs in a distributed manner on Spark Executors.
TensorFrame [13] integrates Spark DataFrame API with Ten-
sorFlow. Our choice of frameworks for this study not only
depends on their popularity but also because the selected
frameworks support the evaluative characteristics upon
which we want this study to be based on. They provide sup-
port for RDMA over high-performance interconnects and also
support training usingGPUs andCPUs onBig Data stacks.

Optimizing Big Data Stacks over High-Performance Net-
works. High-performance networking technologies such as
InfiniBand and RDMA have improved network I/O latency
an order of magnitude compared to their Ethernet counter-
part. Recently, RDMA-enhanced versions of Hadoop [11],
[12], [21], Spark [10] show that Big Data technologies can
also exhibit vast performance improvements by utilizing
the features provided by these fast networks.

Optimizing DL Frameworks withHigh-Performance Communi-
cation Techniques. To scale out Deep Learning frameworks,
HPC capabilities are brought to theDeepLearning arena these
days. The Microsoft Cognitive Toolkit [3] is a unified deep-
learning toolkit, which implements stochastic gradient
descent (SGD, error backpropagation) learning with auto-
matic differentiation and parallelization acrossmultiple GPUs
and servers. Ammar et al. propose S-Caffe [22], an MPI-based
Caffe design for modernmulti-GPU clusters. Zhang et al. pro-
pose [23], a high performance plugin for DL frameworks
which reduces the communication overhead by optimizing
the messages sent to synchronize gradient vectors across
nodes. Abhinav et al. [24] extend Google TensorFlow for exe-
cution on large-scale clusters using MPI. Moreover, several
other reduction-tree based or Allreduce-like approaches [25],
[26] have been proposed for TensorFlow aswell.

Related Studies on Deep Learning over Big Data. The litera-
ture contains a few studies examining the intersection of
Deep Learning and Big Data. The authors in [27] survey
Deep Neural Networks that have been successfully trained
on the Big Data level. The authors in [28] explore Deep
Learning algorithms which have been executed on Big Data

Fig. 11. Performance of native TensorFlow (Higher Better).

646 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

stacks and identify key areas of research that would help the
community better utilize Big Data stacks for Deep Learning
workloads. Chi et al. implement a data-intensive machine
learning framework called Harp-DAAL [29] intended to
enhance Hadoop-based machine learning applications run-
ning on HPC platforms. It does this by providing an inter-
face to natively use Intels Data Analytics Acceleration
Library (DAAL)11 to accelerate JVM based data-intensive
machine learning applications.

Different than the above-mentioned studies, this paper
aims to characterize DLoBD stacks regarding performance,
scalability, accuracy, and resource utilization on RDMA-
capable high-speed networks and multi-core CPUs/GPUs.
This paper extensively extends its earlier version [30] with
the following aspects: 1) Add architecture discussions and
performance characteristics for MMLSpark; 2) Provide an
in-depth performance analysis for TensorFlow and Tensor-
FlowOnSpark, which identify the potential bottlenecks
inside the TensorFlowOnSpark stack; 3) More technical dis-
cussions and findings are added in this version. All of these
differences significantly improve this paper to summarize
the characteristics of current-generation DLoBD stacks and
provide more interesting future research avenues.

7 CONCLUSIONS

This paper first presents a detailed architectural overview
of four representative DLoBD stacks (i.e., CaffeOnSpark,
TensorFlowOnSpark, MMLSpark, and BigDL) over RDMA-
capable high-speed networks. Then, we conduct a compre-
hensive evaluation of these four stacks to characterize their
performance, scalability, accuracy, and resource utilization
with typical Deep Learning models and datasets over
CPU, GPU, and InfiniBand. Our evaluation reports show
the following insights and guidance:

� No matter our RDMA-Spark design or other RDMA-
based designs in the community, we see the RDMA
scheme can benefit Deep Learning workloads. This
paper shows up to 2.7x performance speedup with
RDMA compared to the IPoIB scheme for Deep
Learning workloads. The RDMA scheme can also
scale better and utilize resources more efficiently
than the IPoIB scheme over InfiniBand clusters.

� Both GPU and CPU can compute Deep Learning
workloads faster with their co-designed efficient
Deep Learning oriented libraries, such as cuDNN and
Intel MKL. For most cases, GPU-based Deep Learning
designs can outperform CPU-based designs, but not
always.We see that for LeNet onMNIST, CPU +MKL
can achieve better performance than GPU and GPU +
cuDNNon 8 and 16 nodes.

� For the samedesign,we can report performancebenefits
from two perspectives: time to reach a certain accuracy
and consumed time for epoch-level. High-performance
schemes (e.g., RDMA) can benefit Deep Learning work-
loads from both perspectives, but we see higher
improvementwithRDMA for epoch-level evaluation.

� The current generation DLoBD stacks, like the ones
we have evaluated in this paper, still can not utilize all

the available cluster resources efficiently. There are
still large rooms for them to be further improved. Fur-
thermore, due to lack of standard benchmarks that
can run on all these DLoBD stacks, some meaningful
performance comparisons among these DLoBD
frameworks can not be done easily. These will be the
interesting and important future research avenues.

In the future, we plan to investigate more components in
DLoBD stacks and propose advanced designs to further
improve their performance. In the meantime, we also plan
to design and develop more DLoBD benchmarks to help the
DLoBD community to perform more types of comparisons
such as to show which DLoBD stack should be used in a sin-
gle-machine or multi-machine scenario.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support of this project by
US National Science Foundation grants #CNS-1419123, #IIS-
1447804, #ACI-1450440, #CNS-1513120, and #IIS-1636846. It
used the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE),which is supported byUSNational Science
Foundation grant numberOCI-1053575.

REFERENCES

[1] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proc. 22nd ACM Int. Conf. Multime-
dia, 2014, pp. 675–678.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., “TensorFlow:
A system for large-scale machine learning,” in Proc. 12th USENIX
Symp. Operating Syst. Des. Implement., 2016, vol. 16, pp. 265–283.

[3] F. Seide and A. Agarwal, “CNTK: Microsoft’s open-source deep-
learning toolkit,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining, 2016, pp. 2135–2135.

[4] P.Moritz, R. Nishihara, I. Stoica, andM. I. Jordan, “SparkNet: Train-
ing deep networks in spark,” arXiv preprint arXiv:1511.06051,
Nov. 2015, http://adsabs.harvard.edu/abs/2015arXiv151106051M

[5] “Deeplearning4j: Open-Source Distributed Deep Learning for the
JVM,” 2018, https://deeplearning4j.org

[6] J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia, C.
Zhang, Y. Wan, Z. Li, J. Wang, S. Huang, et al., “BigDL: A distrib-
uted deep learning framework for big data,” arXiv preprint
arXiv:1804.05839, Apr. 2018, http://adsabs.harvard.edu/abs/
2018arXiv180405839D

[7] M. Hamilton, S. Raghunathan, A. Annavajhala, D. Kirsanov,
E. de Leon, E. Barzilay, I.Matiach, J. Davison,M. Busch,M.Oprescu,
et al., “Flexible and scalable deep learning with MMLSpark,” arXiv
preprint arXiv:1804.04031, Apr. 2018, http://adsabs.harvard.edu/
abs/2018arXiv180404031H

[8] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “CuDNN: Efficient primitives for
deep learning,” arXiv preprint arXiv:1410.0759, Oct. 2014, http://
adsabs.harvard.edu/abs/2014arXiv1410.0759C

[9] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and
Y.Wang, “Intel Math Kernel Library,” inHigh-Performance Computing
on the Intel� Xeon PhiTM. Berlin, Germany: Springer, 2014, pp. 167–188.

[10] X. Lu, D. Shankar, S. Gugnani, and D. K. D. K. Panda, “High-
performance design of apache spark with RDMA and its benefits
on various workloads,” in Proc. IEEE Int. Conf. Big Data,
Dec. 2016, pp. 253–262.

[11] M. Wasi-ur Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar, and
D. K. Panda, “High-performance design of YARN MapReduce on
modern HPC clusters with lustre and RDMA,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp., 2015, pp. 291–300.

[12] N. S. Islam, X. Lu, M. Wasi-ur Rahman, D. Shankar, and
D. K. Panda, “Triple-H: A hybrid approach to accelerate HDFS
on HPC clusters with heterogeneous storage architecture,” in
Proc. 15th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput.,
2015, pp. 101–110.11. https://software.intel.com/en-us/intel-daal

LU ETAL.: DLOBD: A COMPREHENSIVE STUDYOF DEEP LEARNING OVER BIG DATA STACKS ON HPC CLUSTERS 647

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

http://adsabs.harvard.edu/abs/2015arXiv151106051M
https://deeplearning4j.org
http://adsabs.harvard.edu/abs/2018arXiv180405839D
http://adsabs.harvard.edu/abs/2018arXiv180405839D
http://adsabs.harvard.edu/abs/2018arXiv180404031H
http://adsabs.harvard.edu/abs/2018arXiv180404031H
http://adsabs.harvard.edu/abs/2014arXiv1410.0759C
http://adsabs.harvard.edu/abs/2014arXiv1410.0759C
https://software.intel.com/en-us/intel-daal

[13] Databricks, “Tensorframes: Tensorflow wrapper for Dataframes on
Apache Spark,” 2016, https://github.com/databricks/tensorframes

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[15] W. Chong, D. Blei, and F.-F. Li, “Simultaneous image classification
and annotation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2009, pp. 1903–1910.

[16] K. Simonyan andA. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
Sep. 2014, http://adsabs.harvard.edu/abs/2014arXiv1409.1556S

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2015, pp. 1–9.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[20] R. L. Moore, C. Baru, D. Baxter, G. C. Fox, A. Majumdar,
P. Papadopoulos,W. Pfeiffer, R. S. Sinkovits, S. Strande,M. Tatineni,
et al., “Gateways to discovery: Cyberinfrastructure for the long tail
of science,” in Proc. Annu. Conf. Extreme Sci. Eng. Discovery Environ.,
2014, Art. no. 39.

[21] X. Lu, N. S. Islam, M. W. Rahman, J. Jose, H. Subramoni, H. Wang,
and D. K. Panda, “High-performance design of Hadoop RPC with
RDMA over InfiniBand,” in Proc. IEEE 42nd Int. Conf. Parallel Pro-
cess., Oct. 2013, pp. 641–650.

[22] A. Awan, K. Hamidouche, J. Hashmi, and D. K. Panda, “S-Caffe:
Co-designing MPI runtimes and caffe for scalable deep learning
on modern GPU clusters,” in Proc. 22nd ACM SIGPLAN Symp.
Principles Practice Parallel Program., Feb. 2017, pp. 193–205.

[23] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication
architecture for distributed deep learning on GPU clusters,” Use-
nix Annu. Tech. Conf., pp. 181–193, 2017.

[24] A. Vishnu, C. Siegel, and J. Daily, “Distributed TensorFlow with
MPI,” arXiv preprint arXiv:1603.02339, Mar. 2016, http://adsabs.
harvard.edu/abs/2016arXiv160302339V

[25] “Bringing HPC techniques to deep learning.” (2017). [Online].
Available: http://research.baidu.com/bringing-hpc-techniques-
deep-learning/

[26] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed
deep learning in TensorFlow,” arXiv preprint arXiv:1802.05799,
Feb. 2018, http://adsabs.harvard.edu/abs/2018arXiv180205799S

[27] X.-W. Chen and X. Lin, “Big data deep learning: Challenges and
perspectives,” IEEE Access, vol. 2, pp. 514–525, 2014.

[28] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya,
R.Wald, and E.Muharemagic, “Deep learning applications and chal-
lenges in big data analytics,” J. Big Data, vol. 2, no. 1, pp. 1–21, 2015.

[29] L. Chen, B. Peng, B. Zhang, T. Liu, Y. Zou, L. Jiang, R. Henschel,
C. Stewart, Z. Zhang, E. Mccallum, et al., “Benchmarking Harp-
DAAL: High performance Hadoop on KNL clusters,” in Proc.
IEEE 10th Int. Conf. Cloud Comput., 2017, pp. 82–89.

[30] X. Lu, H. Shi, M. H. Javed, R. Biswas, and D. K. Panda,
“Characterizing deep learning over big data (DLoBD) stacks on
RDMA-capable networks,” in Proc. IEEE 25th Annu. Symp. High-
Perform. Interconnects, Aug. 2017, pp. 87–94.

Xiaoyi Lu is a research scientist with the Depart-
ment of Computer Science and Engineering, Ohio
State University, USA. His current research inter-
ests include high performance interconnects and
protocols, big data, Hadoop/Spark/Memcached
Ecosystem, parallel computing models (MPI/
PGAS), virtualization, cloud computing, and deep
learning. He is currently leading the design and
development for the High-Performance Big Data
(HiBD) project (http://hibd.cse.ohio-state.edu).
The HiBD packages are currently being used by

more than 285 organizations in 34 countries. More than 26,100 downloads
of these libraries have taken place. He has published more than 90 papers
in major journals and international conferences related to these research
areas and is actively involved in various professional activities in academic
journals and conferences. He is a member of the IEEE and ACM. More
details are available at http://web.cse.ohio-state.edu/�lu.932.

Haiyang Shi received the bachelor of engineer-
ing degree in computer science and technology
from Tianjin University, China. He is working
toward the PhD degree in the Department of
Computer Science and Engineering, Ohio State
University, USA. He is also a graduate research
assistant in NOWLAB, led by Dr. D. K. Panda. His
research interests include big data, distributed
file system, and erasure code. Before joining
OSU, he worked as a big data engineer at Mining-
Lamp and Weibo, China.

Rajarshi Biswas received the bachelor of engi-
neering degree in information technology from
Jadavpur University, India. He is working toward
the master’s degree in Computer Science and
Engineering, The Ohio State University. He is
also a graduate research assistant in NOWLAB,
led by Dr. D. K. Panda. His research interests
include distributed computing, deep learning, and
big data. Before joining OSU, he worked as a
senior software development engineer at Citrix
Research and Development, India.

M. Haseeb Javed received the undergraduate
degree in software engineering from the National
University of Science and Technology (NUST),
Pakistan. He is working toward the graduate
degree at The Ohio State University and a
research assistant at NOWLAB, supervised by
Dr. D. K. Panda. His current focus is on systems
research cross-cutting the domain of big-data
and high-performance computing.

Dhabaleswar K. Panda is a professor of com-
puter science and engineering with Ohio State
University. He has published more than 400
papers in major journals and international confer-
ences. He and his research group members have
been doing extensive research on modern net-
working technologies including InfiniBand, High-
Speed Ethernet and RDMA over Converged
Enhanced Ethernet (RoCE). The MVAPICH2
(High Performance MPI over InfiniBand, iWARP
and RoCE) and MVAPICH2-X software libraries,

developed by his research group (http://mvapich.cse.ohio-state.edu),
are currently being used by more than 2,900 organizations worldwide (in
86 countries). This software has enabled several InfiniBand clusters to
get into the latest TOP500 ranking during the last decade. More than
465,000 downloads of this software have taken place from the project’s
website alone. The RDMA packages for Apache Spark, Apache Hadoop,
and Memcached together with OSU HiBD benchmarks from his group
(http://hibd.cse.ohio-state.edu) are also publicly available. These librar-
ies are currently being used by more than 285 organizations in 34 coun-
tries. More than 26,100 downloads of these libraries have taken place.
His research has been supported by funding from US National Science
Foundation, US Department of Energy, US Department of Defense, and
several industry including Intel, Cisco, Cray, SUN, Mellanox, QLogic,
NVIDIA, Microsoft, and NetApp. He is an IEEE fellow and a member of
the ACM. More details are available at http://web.cse.ohio-state.edu/
�panda.2/.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

648 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2018

Authorized licensed use limited to: The Ohio State University. Downloaded on January 15,2021 at 21:19:14 UTC from IEEE Xplore. Restrictions apply.

https://github.com/databricks/tensorframes
http://adsabs.harvard.edu/abs/2014arXiv1409.1556S
http://adsabs.harvard.edu/abs/2016arXiv160302339V
http://adsabs.harvard.edu/abs/2016arXiv160302339V
http://research.baidu.com/bringing-hpc-techniques-deep-learning/
http://research.baidu.com/bringing-hpc-techniques-deep-learning/
http://adsabs.harvard.edu/abs/2018arXiv180205799S
http://hibd.cse.ohio-state.edu
http://web.cse.ohio-state.edu/~lu.932
http://web.cse.ohio-state.edu/~lu.932
http://mvapich.cse.ohio-state.edu
http://hibd.cse.ohio-state.edu
http://web.cse.ohio-state.edu/~panda.2/
http://web.cse.ohio-state.edu/~panda.2/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

