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ABSTRACT

Erasure Coding (EC) NIC offload is a promising technology for de-

signing next-generation distributed storage systems. However, this

paper has identified three major limitations of current-generation

EC NIC offload schemes on modern SmartNICs. Thus, this paper

proposes a new EC NIC offload paradigm based on the tripartite

graph model, namely TriEC. TriEC supports both encode-and-send

and receive-and-decode operations efficiently. Through theorem-

based proofs, co-designs with memcached (i.e., TriEC-Cache), and

extensive experiments, we show that TriEC is correct and can de-

liver better performance than the state-of-the-art EC NIC offload

schemes (i.e., BiEC). Benchmark evaluations demonstrate that TriEC

outperforms BiEC by up to 1.82x and 2.33x for encoding and recov-

ering, respectively. With extended YCSB workloads, TriEC reduces

the average write latency by up to 23.2% and the recovery time

by up to 37.8%. TriEC outperforms BiEC by 1.32x for a full-node

recovery with 8 million records.
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1 INTRODUCTION
Erasure Coding (EC), a promising alternative of replication, has

been brought into many popular distributed storage systems, such

as HDFS 3.x [14], Ceph [2], QFS [30], Google Colossus [12], Face-

book f4 [27], Baidu Atlas [20], and Backblaze [1]. Compared with

replication, EC is capable of utilizing storage space more efficiently

while providing equal or more data reliability and durability [45].

Prevalent erasure codes such as Reed-Solomon (RS) codes [36] are

Maximum Distance Separable (MDS). An MDS code (e.g., RS(k,m)),

generatingm parity chunks from k original data chunks, is able to
recover up tom corrupt or lost chunks from any k of (k+m) chunks.

The EC-based resiliency has a storage overhead ofm/k to tolerate
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up tom chunk corruptions. By contrast, to guarantee the same data
reliability for a single data chunk, replication needs to storem + 1
replicas, and thus the storage overhead is as high asm. However, the
crucial challenge of employing EC in distributed storage systems

is how to efficiently alleviate the encoding overhead to generate

the parity chunks and the decoding cost to reconstruct the original

data chunks for failures.

To alleviate the EC overhead, advanced EC schemes have been

proposed in the community. Broadly, these EC schemes can be

divided into two categories – On-CPU EC and Off-CPU EC. Intel

ISA-L [18] and Jerasure [31] are quite popular On-CPU EC libraries

for storage systems. On-CPU EC has good performance but it con-

sumes more CPU cycles for finishing EC tasks, which could incur

additional overhead due to possible CPU contentions with applica-

tions. On the other hand, Off-CPU EC is an emerging and promising

feature, which provides the capabilities of performing EC tasks on

advanced hardware devices, such as GPGPUs [6], FPGAs [35], and

smart network interface cards (SmartNICs). For instance, the host

channel adapters (HCA) of Mellanox ConnectX-4/5 and later Smart-

NICs offer an EC calculation engine [25], which allows applications

to offload EC tasks on the NIC. Compared with On-CPU EC, Off-

CPU EC is a new design methodology which brings computation

offloading capabilities (low CPU utilization) and more overlapping

opportunities to the applications.

1.1 Motivation

Among different kinds of Off-CPU EC schemes, the EC NIC offload

technology is an exciting direction, because it provides the possi-

bility of offloading both EC calculations and data transmissions to

the NIC. More specifically, there are two kinds of schemes to take

advantage of the EC offload capability on SmartNICs (e.g., Mellanox

InfiniBand): (1) Incoherent EC Calculation and Networking, and (2)

Coherent EC Calculation and Networking [25].

The incoherent EC calculation and networking scheme means

the storage systems have to take care of EC calculations and data

transmissions separately. Taking EC encoding for example, an ini-

tiator node first encodes data chunks on the NIC and then sends

data chunks and generated parity chunks to other receiver nodes

(termed as “encode-then-send”). Figure 1a describes the detailed

steps of the encode-then-send scheme. As we can see here, even

though EC computations are offloaded to the NIC in this scheme,

the CPU still needs to be involved in multiple steps, such as posting

send operations (i.e., post_send) for original data chunks, posting

the EC operation, and then posting send operations again for the

generated parity chunks. Not only for higher CPU involvements,

but there are also many Direct Memory Access (DMA) operations

happening in the encode-then-send workflow. We believe this is

not the optimal way of utilizing the EC NIC offload technology on

SmartNICs.
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Figure 1: Overview of Existing EC NIC Offload Schemes

On the other hand, with the coherent EC calculation and net-

working scheme, the storage systems can offload both EC calcula-

tions and data transmissions simultaneously to the NIC. As shown

in Figure 1b, the initiator node only needs to post one network

operation (i.e., post_encode_and_send), which can fully offload the

EC computation and communication stages to the NIC (termed as

“encode-and-send”). In contrast to the encode-then-send scheme,

the encode-and-send scheme has the potential to deliver higher per-

formance, because it ideally could save several (or a few) post_send

and DMA operations in the pipeline. Thus, in this paper, we take

the encode-and-send scheme (i.e., coherent EC calculation and net-

working scheme) as the start-of-the-art baseline for our study.

While the coherent EC calculation and networking scheme on

modern SmartNICs is very powerful as discussed above, we have

identified three major limitations with its current-generation de-

signs.

Limitation 1: We find that current-generation encode-and-send

scheme follows a Bipartite graph based EC encoding paradigm.

We call this existing encoding paradigm as BiEC in this paper, which

means the EC encoding process is decomposed into two stages

running on two sets of nodes, such that one set of nodes (e.g., clients)

just perform EC encodings and the other set of nodes (e.g., data

nodes) just receive encoded chunks. BiEC inherits the traditional

On-CPU EC methodology (e.g., EC schemes in [1, 2, 12, 14, 27, 30])

to simply use NICs as processors or accelerators, which can not fully

exploit networked computing powers to achieve high parallelism

and overlapping. (See Figure 3a in Section 3)

Limitation 2: Current-generation EC NIC offload only supports

to offload the encode-and-send primitive, but it is lack of the sup-

port for “receive-and-decode” primitive on the NIC, which should

be the other essential offload primitive (i.e., post_recv_and_decode).

Because of the missing of the “receive-and-decode” primitive, dis-

tributed storage systems can only first receive all the required

chunks and then perform the decode operation on them with cur-

rent EC NIC offload design. This is again a bipartite graph-based

decoding, which can not achieve enough parallelism and overlap-

ping. (See Figure 5a in Section 3)

Limitation 3: The semantics of decoding with current-generation

EC NIC offload can only guarantee the readers will get the cor-

rect data, but it can not guarantee that the unhealthy nodes will

automatically recover the lost or corrupt data. Thus, applications

typically need to design an out-of-band recovery mechanism to

reconstruct the lost or corrupt data. This is a semantic mismatch

between application requirements and primitives provided by the

state-of-the-art EC NIC offload mechanism. (See Section 5)

1.2 Contribution

To address the identified limitations as discussed above, in this

paper, we first propose a new EC NIC offload paradigm based on

the tripartite graph model, called Tripartite graph based ECNIC

Offload or TriEC. The idea of TriEC comes from the insightful

observations on the EC computation process and how it can be

executed on networked computing resources in parallel. TriEC de-

composes a full EC calculation pipeline into three stages, and each

stage only handles a subset of EC tasks. From the graph perspective,

these concurrent sub-EC tasks on three sets of nodes construct a

tripartite graph. TriEC enables these sub-EC tasks to be executed

on different nodes in parallel. Thus, TriEC can gain more paral-

lelism and overlapping compared with BiEC for both encoding and

decoding data. To prove the correctness and efficiency of TriEC,

we systematically model both BiEC and TriEC, and then we prove

several important theorems and corollaries for TriEC (See Section 4).

Secondly, we propose a new receive-and-decode primitive on

top of Mellanox EC NIC offload APIs. The receive-and-decode prim-

itive is also designed by the guidance of TriEC principles. It is a

significant complement to the state-of-the-art EC NIC offload APIs

and enables upper-layer applications to leverage EC NIC offload

APIs for data reconstructions fully.

Thirdly, to show the benefits of TriEC, we co-design a new key-

value store based on memcached with TriEC, called TriEC-Cache.

With TriEC-Cache, this paper further presents how TriEC can help

distributed storage systems to achieve efficient in-band data re-

covery through the proposed receive-and-decode primitive. We

also discuss several optimization techniques (e.g., avoidance of

sending unrequested chunks and EC calculator cache) to fully take

advantage of the performance potential of Mellanox EC NIC offload

capabilities. These optimizations could be integrated into next-

generation Mellanox EC NIC offload APIs or inspire the researchers

and engineers to refine the EC NIC offload APIs in the future.

Benchmark evaluations demonstrate that TriEC outperforms

BiEC by up to 1.82x and 2.33x for encoding and recovering, respec-

tively. To further understand the performance benefits of our pro-

posed designs in TriEC-Cache with real workloads, we extend the

existing Yahoo! Cloud Serving Benchmark (YCSB) [5] application-

level workloads to support a new operation (i.e., read_with_erasures)

for evaluating the performance impact of EC recoveries. We also

extend YCSB to guarantee the occurrence of read_with_erasures

within normal reads follows the Weibull distribution, which is the

typical failure distribution for real-world HPC and data center sys-

tems [11, 15, 24, 38].

The performance evaluations on up to 25 nodes with the ex-

tended YCSB reveal that TriEC designs can achieve lower latency

and higher throughput, compared with the baseline implemented
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with BiEC. Specifically, with only 1% failure occurrences, TriEC re-

duces the average write latency by up to 23.2% and 12.0% for equal-

shares and read-mostly workloads, respectively, and cuts down

the average latency of read_with_erasure by up to 37.8%, 37.5%,

and 36.1% for equal-shares, read-mostly, and read-only workloads,

respectively. On the other hand, TriEC improves the overall system

throughput by up to 13.3% for equal-shares, 14.8% for read-mostly,

and 13.9% for read-only workloads. Moreover, TriEC outperforms

BiEC by 1.32x for a full-node recovery with 8 million records.

In summary, this paper makes the following key contributions:

(1) We propose a novel tripartite graph based EC NIC offload

paradigm (i.e., TriEC) and its associated efficient designs for

both encoding and decoding;

(2) We prove that TriEC is correct and has the potential to deliver

better performance than current-generation BiEC based NIC

offload schemes;

(3) Through co-designed TriEC-Cache system and extensive

evaluations, we verify the theorems of TriEC and demon-

strate its benefits for real-world workloads.

To the best of our knowledge, this is the first work to propose a

tripartite graph based EC paradigm (i.e., TriEC) and demonstrate

the efficiency of TriEC on SmartNIC’s EC offload schemes.

2 ERASURE CODING BASICS
Reed-Solomon (RS) codes are the most widely-used erasure codes

and have been employed in many storage systems [1, 2, 12, 14,

27, 30]. For an RS code (e.g., RS(k,m)), it encodes on k original
data chunks to generate k data chunks andm parity chunks. As
illustrated in Figure 2a, the k original data chunks are identical to
the generated k data chunks. This property is named as systematic,

which enables applications to read data directly from encoded data

if no corruptions occur. RS codes are Maximum Distance Separable

(MDS). An MDS code (e.g., RS(k,m)) is able to recover up to m
corrupt or lost chunks from any k of the generated (k +m) chunks.
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Figure 2: Reed-Solomon Coding for k = 4 andm = 2

In a typical erasure-coded storage system, it divides data into

blocks and applies EC independently on a per-block basis. For an

RS code (e.g., RS(k,m)), a block is split into k equal-size uncoded
chunks (i.e., data chunks), andm additional parity chunks are cal-
culated from the k data chunks. As illustrated in Figure 2a, the
calculation involved in RS(4, 2)’s encoding isC × [d0,d1,d2,d3]

ᵀ =

[d0,d1,d2,d3,p0,p1]
ᵀ . The collection of k+m chunks forms a stripe.

Each stripe is an independent entity for EC, which allows the de-

sign of distributed storage systems to be flexible. A common way

to persistently store stripes is to store the k +m chunks within

a stripe on k +m separate nodes, since this arrangement allows
recovery from any combination of up tom simultaneous corrup-
tions or failures, which achieves the theoretically best for MDS

codes. To recover corrupt or missing data chunks in a stripe, the

system first collects any k survived chunks in the same stripe and
then reconstructs unhealthy chunks by computing the decoding

calculation as shown in Figure 2b. For example, to recover d2 and d3,
the system constructs decoding matrixG ′ by choosing four rows
corresponding to the remaining four healthy chunks (i.e., d0, d1, p0,
and p1) and taking the inverse of it, and then multipliesG ′ with the
four survived chunks to reconstruct the four original data chunks

(i.e., d0 to d3).

3 TriEC DESIGN
This section presents our proposed TriEC paradigm and compares

it with the default BiEC paradigm. To help describe the EC process

precisely, we use the following symbols in this section, including:

n: number of iterations; k : number of data chunks;m: number of
parity chunks; D: chunk size; N x

y : Node y in layer x ;T
l
EC
: execution

time of erasure coding operation on l chunks; T lenc: execution time

for erasure encoding l chunks; T l
dec
: execution time for erasure

decoding l chunks; Tcomm: latency for sending chunks to remote

peers; and T l
XOR
: execution time for XORing l chunks. Note that

we omit the superscripts in the aforementioned symbols if l = 1,
e.g., Tenc denotes the execution time for encoding one chunk with
D bytes.

3.1 Encoding Paradigm for NIC Offload

A typical encoding procedure of BiEC is depicted in Figure 3a. In

each iteration, when there are k data chunks available, the initiator
(i.e., N 11 ), which is going to write chunks to remote peers, offloads
encoding calculation and networking (i.e., encode-and-send) to its

NIC. The NIC first sends out the k data chunks and then encodes on
the available k data chunks to generatem parity chunks. Once com-
pleting performing the encoding calculation, the NIC sends these

parity chunks to different remote peers as previously determined

by N 11 . It is evident that N
1
1 is highly possible to be a bottleneck of

the entire system, since N 11 carries out both computation and data
transmission while other nodes only receive data packets and wait.

If taking multiple iterations into account, we observe that there

is no overlapping between iterations (as shown in Figure 4a). The

reason behind our observation is that, to guarantee data reliability

and availability, N 11 cannot move forward until all remote peers
acknowledge that all chunks are safely stored. This observation

also means the bipartite encoding paradigm for NIC offload is lack

of enough parallelism and overlapping.

Since there is no overlapping between iterations, the execution

time for BiEC (i.e., Tbi−enc) of n iterations is modeled as Equation 1.

Tbi−enc = n ·max
{
T kenc +Tcomm,Tcomm

}
= n · (T kenc +Tcomm)

(1)

For simplicity, we assume the time costs (i.e., Tcomm) of commu-
nicating data chunks and parity chunks are identical in our models,

since the chunk sizes of data chunks and parity chunks are the same

and these chunks are all transmitted in parallel. High-performance
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Figure 3: Overview of Two Erasure Encoding Paradigms for

NIC Offload

interconnects typically have enough bandwidth to transmit these

chunks efficiently. Thus, we believe this is a reasonable assumption

for modern high-performance SmartNICs.
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Figure 4: Activities of Two Erasure Encoding Paradigms for

NIC Offload over Time

By contrast, our proposed TriEC makes it possible to conduct

EC calculations and networking in parallel and to overlap between

iterations. Figure 3b illustrates a typical workflow of TriEC. After

collecting k data chunks, the initiator (N 11 ) distributes them onto k

data peers (i.e., N 21 to N
2
k
). After the k data peers indicate that all k

data chunks are safely stored,N 11 steps to next iteration. Meanwhile,

each NIC of N 21 to N
2
k
performs a relatively smaller data encoding

calculation, which outputsm intermediate chunks. Each node of
them parity peers (i.e., N 31 to N

3
m ) receives one intermediate chunk

from each of the k data peers (N 21 toN
2
k
), and finally gets the wanted

parity chunk by XORing k intermediate chunks (see Section 4 for
proof and more details). Since a large EC calculation is decomposed

into several smaller ones being computed by multiple nodes in

parallel, our proposed TriEC is expected to achieve more efficient

resource utilization and higher performance. Moreover, the nodes

in each layer can move forward to the next iteration as long as

the chunks sent by them are acknowledged as stored. Therefore,

the overlap between iterations happens and TriEC delivers more

performance benefits.

Figure 4b briefly depicts the pipeline of TriEC, which shows how

activities of different layers overlap in TriEC. In the three layers of

TriEC, layer-1 carries out communication (Tcomm), layer-2 performs
EC and communication (Tenc +Tcomm), and layer-3 finally XORs

received intermediate chunks to generate parity chunks (T k
XOR
).

Though the activities of each layer must be performed iteration

by iteration, the activities between any two adjacent layers can

be overlapped. Assume there are n iterations, after the first itera-
tion, each of the other n − 1 iterations could be completed within

max
{
Tcomm,Tenc +Tcomm,T

k
XOR

}
since the activities of the three

layers are overlapped. Thus, Equation 2 describes the execution

time (Ttri−enc) of TriEC encoding with overlapping.

Ttri−enc = 2 ·Tcomm +Tenc +T
k
XOR

+ (n − 1) ·max
{
Tcomm,Tenc +Tcomm,T

k
XOR

}
= 2 ·Tcomm +Tenc +T

k
XOR

+ (n − 1) ·max
{
Tenc +Tcomm,T

k
XOR

}
(2)

BiEC and TriEC have different fault tolerance mechanisms. For

BiEC, if an iteration begins, the stripe involved in the previous

iteration is persistent; thus, the k data chunks are able to tolerate
up tom failures. By contrast, for TriEC, the previous stripe is able
to toleratem failures after parity peers acknowledge thatm parity
chunks are persistent. Therefore, when designing distributed stor-

age systems with TriEC, we need to take care of this difference in

the I/O pipelines.

3.2 Decoding Paradigm for NIC Offload

For a typical storage system, the initiator has to go through three

steps to complete the data recovery. The three steps are reading

data chunks, detecting data corruptions, and reconstructing data.

To enable the decoding paradigms to achieve the best overlap, we

assume that the initiator has already issued enough read requests

before the decoding paradigms start to process. We also omit these

read requests in the activity figures to make them simpler and

clearer. Since the latency to detect data corruptions is very low,

we treat the corruption detecting as an event, named corruption

detecting event, and it is denoted as a pink diamond in the activity

figures.

For each iteration in bipartite decoding, when N 11 (i.e., N
1
1 in

Figures 5a and 6a) detects that there are data corruptions, it fetches
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several survived chunks from corresponding remote peers. When

N 11 has k survived chunks, it then decodes on the k chunks to
recover the k original data chunks. Since the initiator has to carry
out corruption detecting and data reconstructing sequentially, there

is no overlap between iterations. Thus, as shown in Figure 6a, we

can model the execution time (Tbi−dec) of n iterations of bipartite
decoding by Equation 3.

Tbi−dec = n · (Tcomm +T
k
dec

) (3)
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Figure 5: Overview of Two Erasure Decoding Paradigms for

NIC Offload

On the other hand, at the beginning of the decoding workflow

in TriEC, the initiator (N 11 ) talks to the remote peers (i.e., N
2
1 to N

2
p ),

which are responsible for storing the corrupt chunks. Each node

of N 21 to N
2
p detects data corruptions and fetches k intermediate

chunks from k survived peers (i.e., N 31 to N
3
k
), then XORs on the

k intermediate chunks to reconstruct the corrupt chunk. After
recovering the corrupt chunks, N 21 to N

2
p update local chunks and

send them back to N 11 . Each node on the third layer generates p
(number of corrupt chunks) intermediate chunks and sends them to

nodes of N 21 to N
2
p with encode-and-send primitive (see Section 4 for

proof and more details), i.e., the recv-and-decode primitive proposed

in this paper is implemented with encode-and-send primitive to

provide high-programmability.

TriEC is able to offload corruption detection to the nodes in the

second layer, and it can also decouple corruption detection and

major data decoding processes between the second layer and the

third layer in the tripartite graph, respectively. For instance, nodes

N 21 to N
2
p on the second layer take care of corruption detecting, and

nodes N 31 to N
3
k
carry out the major parts of data reconstructing.

Therefore, each layer in the tripartite graph structure only depends

on the next adjacent layer, which enables overlap to occur within

the entire graph (as shown in Figure 6b). In addition, since a large

decoding computation is split into several smaller ones being com-

puted by multiple nodes in parallel, TriEC gains more parallelism.

...
...

...
...

...

(a) Bipartite Paradigm (Default)

(b) Tripartite Paradigm (Proposed)
Time

Corruption Detecting 
Event

Corrupt Node

Figure 6: Activities of Two Erasure Decoding Paradigms for

NIC Offload over Time

Furthermore, as illustrated in Figure 6b, the recoveries on N 21 to

N 2p are in-band, i.e., the nodes involved in reconstructing corrupt

chunks become healthy at the end (refer to Section 5.2 for more

details). The in-band recovery does not require the initiator N 11 to
detect or realize any data corruptions, which can lead to better per-

formance. The execution time (Ttri−dec) of n times of TriEC decodes
is as shown in Equation 4.

Ttri−dec = Tdec + 2 ·Tcomm +T
k
XOR

+ (n − 1) ·max
{
Tdec +Tcomm,T

k
XOR +Tcomm

} (4)

Note that, in this section, we consider the best overlapping cases

for both BiEC and TriEC for comparing them fairly. TriEC achieves

overlapping and parallelism by decomposing EC procedures into

multiple stages which are able to be performed on separate nodes

in parallel. Thus TriEC is able to deliver better performance than

BiEC.

To summarize, our proposed TriEC brings more parallelism and

overlapping, and we show that TriEC can outperform BiEC in both

encoding and decoding data in the next section.

4 THEOREMS OF TriEC
According to RS(k,m) encoding scheme,m additional parity chunks
are calculated from the k original data chunks. The encoding oper-
ation can be represented as a matrix-vector multiplication, where

the vector of k data chunks is multiplied by a particular matrix

C =

[
I
G

]
. The matrix C is of size (k + m) × k , where I is a

k × k identity matrix andG is anm × k matrix called the generator
matrix, which yields the MDS property. Let’s denote the k data
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chunks by [D1,D2, · · · ,Dk ], and denote the m parity chunks by
[P1, P2, · · · , Pm ]. Such that, the encoding operation is represented

by Equation 5.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

д11 д12 · · · д1k
д21 д22 · · · д2k
...

...
. . .

...

дm1 дm2 · · · дmk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸���������������������������︷︷���������������������������︸
C

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1
D2
D3
...

Dk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1
D2
...

Dk

P1
...

Pm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

In RS(k,m) decoding scheme, corrupt chunks are reconstructed

by solving the reduced system of linear equations obtained by re-

moving the rows corresponding to corrupt chunks in Equation 5.

Each decoding operation takes two steps: (1) constructing the de-

coding matrix (denoted byG ′) by choosing k survived rows ofC ,
and then taking the inverse of the matrix comprising of the chosen

k rows, and (2) multiplying the decoding matrix with the vector
composed of data and parity chunks corresponding to the cho-

sen k rows. All additions and multiplications involved in encoding
and decoding are based on Galois Field arithmetic overw-bit units
(termed GF (2w )). Note that additions on GF (2w ) are associative

and equivalent to bitwise XOR.

4.1 Theorem of Equivalence

Lemma 1. BiEC is a correct EC implementation.

Proof. The implementation of BiEC strictly follows the calcu-

lation procedure (i.e., EC definition) as shown in Equation 5; thus,

BiEC is correct obviously. �

Theorem 1. TriEC is equivalent to BiEC with respect to EC outputs.

Proof. (Encode) Let Pi denote a parity chunk, where 1 ≤ i ≤ m.
According to Equation 5, we can get the Pi for BiEC as following:

Pi =
k∑
j=1

дi j · D j (6)

In TriEC, node s (1 ≤ s ≤ k) on the second layer offloads the
calculation as shown in Equation 7 onto its NIC, and then sends

the intermediate chunks (i.e., I1s to Ims ) tom parity nodes on the
third layer. ⎡⎢⎢⎢⎢⎢⎢⎢⎣

д1s
д2s
...

дms

⎤⎥⎥⎥⎥⎥⎥⎥⎦
× Ds =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I1s
I2s
...

Ims

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(7)

Let Pt (1 ≤ t ≤ m) denote a parity chunk finally stored on a
third-layer node. As explained in Section 3.1, the third-layer node

constructing the parity chunk by XORing k intermediate chunks
from k second-layer nodes. Such that,

Pt =
k∑
s=1

Its =
k∑
s=1

дts · Ds , (8)

which is identical to Equation 6.

(Decode) Suppose S = [S1, S2, · · · , Sk ]
ᵀ are thek survived chunks

selected to reconstruct up tom corrupt chunks, andG ′ in Equation 9
is the corresponding decoding matrix.

G ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

д′11 д′12 · · · д′
1k

д′21 д′22 · · · д′
2k

...
...
. . .

...

д′
k1

д′
k2

· · · д′
kk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(9)

Let R = [Rc1 ,Rc2 , · · · ,Rcp ] (‖R‖ ≤ m)1 denote the chunks to
be reconstructed, where ct (1 ≤ t ≤ p) is the position of the
corresponding row of Rct inG

′.
If R is recovered with BiEC, then

Rct =
k∑
j=1

д′ct j · Sj (10)

On the other hand, with TriEC, as illustrated in Section 3.2, the

main reconstruction is carried out by the third-layer nodes. Let

Ir s (Rcr ∈ R, 1 ≤ s ≤ k) denote the intermediate chunk which is
constructed by the node storing chunk Ss (Ss ∈ S) and is required
to reconstruct Rcr . Suppose a node on the third layer which stores
chunk Ss (Ss ∈ S) is selected to recover R, it offloads the calculation
in Equation 11 to its NIC, and then sends the generated intermediate

chunks (i.e., I1s to Ips ) to the nodeswhich are reconstructing corrupt
chunks. ⎡⎢⎢⎢⎢⎢⎢⎢⎣

д′c1s
д′c2s
...

д′cps

⎤⎥⎥⎥⎥⎥⎥⎥⎦
× Ss =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I1s
I2s
...

Ips

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(11)

A second-layer node which is responsible for recovering chunk Rcr
(Rcr ∈ R) fetches k intermediate chunks from k survived third-layer
nodes and performs XOR on them to reconstruct the corrupt chunk.

Thus,

Rcr =
k∑
j=1

Icr j =
k∑
j=1

д′cr j · Sj , (12)

which is equivalent to Equation 10.

Since both encoding and decoding are identical, TriEC is equiva-

lent to BiEC. �

The theorem of equivalence implies the following two corollar-

ies:

Corollary 1.1. (Correctness) TriEC is correct.

Proof. Since TriEC is equivalent to BiEC, and BiEC is correct

(Lemma 1), TriEC is correct as well. �

To guarantee the correctness in the implementation of TriEC is

challenging, because of two aspects: (1) implementing the recv-and-

decode primitive with encode-and-send primitive, and (2) construct-

ing sub-matrices (i.e., [д1s , · · · ]
ᵀ in Equation 7 and [д′c1s , · · · ]

ᵀ in

Equation 11) for encoding and decoding in parallel.

Corollary 1.2. (Compatibility) TriEC is compatible with BiEC.

1RS (k,m) can recover at mostm corrupt chunks.
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Proof. TriEC is compatible with BiEC because they are identical

w.r.t EC outputs. �

Because TriEC is compatible with BiEC, the implementation of

TriEC can be validated by comparing its results with those of BiEC;

thus, we can guarantee the implementation correctness of TriEC

based on Corollary 1.2. Corollary 1.2 is also an essential guideline

for designing distributed storage systems with TriEC. It implies that

TriEC is able to work together with BiEC, and thus offers design

flexibility and more co-design opportunities to the upper-layer

applications. For instance, an application does not have to store any

metadata to differentiate chunks erasure-coded by BiEC or TriEC,

because TriEC is able to reconstruct corrupt chunks erasure-coded

by BiEC and vice versa.

4.2 Theorem of Performance

Theorem 2. If T k
EC
> TEC > Tcomm, TEC > T k

XOR
, and n > ϵ ∗,

then TriEC outperforms BiEC.

Proof. (Encode) Since Tenc > T
k
XOR
, Equation 2 is reduced to

Ttri−enc = n · (Tcomm +Tenc) +Tcomm +T
k
XOR (13)

Let Δ = Tbi−enc − Ttri−enc = n · (T kenc − Tenc) − Tcomm − T k
XOR
.

Given that T kenc > Tenc, if

n > ϵ =
T k
XOR
+Tcomm

T kenc −Tenc
, (14)

we obtain Δ > 0, i.e., TriEC performs better than BiEC.

Therefore, TriEC outperforms BiEC in encoding if T kenc > Tenc,

Tenc > T
k
XOR
, and n > ϵ , where ϵ is bound by Equation 14.

(Decode) Given that T k
dec
> Tdec > Tcomm, we can reduce Equa-

tion 4 to Equation 15.

Ttri−dec = n · (Tdec +Tcomm) +Tcomm +T
k
XOR (15)

To obtainΔ = Tbi−dec−Ttri−dec = n·(T
k
dec

−Tdec)−Tcomm−T
k
XOR
>

0, where T k
dec
> Tdec, we have

n > ϵ =
T k
XOR
+Tcomm

T k
dec

−Tdec
. (16)

Thus, for decoding, TriEC delivers better performance than BiEC

if T k
dec
> Tdec > Tcomm, and n > ϵ , where ϵ is bound by Equation

16.

Since Equations 14 and 16 have the same form, and symbolsT kenc
andT k

dec
can be unified asT k

EC
, we conclude that TriEC outperforms

BiEC if T k
EC
> TEC > Tcomm, TEC > T

k
XOR
, and

n >
T k
XOR
+Tcomm

T k
EC

−TEC
. (17)

�

Corollary 2.1. TriEC outperforms BiEC on modern HPC clusters

for large data storage and analytics workloads.

∗The value of ϵ is bound by Equation 17.

Proof. Our profiling results on modern HPC clusters show that

T k
EC
> TEC > Tcomm, TEC � T k

XOR
(in Table 1). The lower bound of

n in Table 1 derived by Equation 17 can be easily satisfied in real-
world storage systems, because the reads and writes in real-world

storage systems can easily incur enough number of iterations (i.e.,

a big n is very common for real-world storage systems). According
to Theorem 2, TriEC can perform better than BiEC on modern HPC

clusters for large data storage and analytics workloads. �

Table 1: Profiling Numbers on Modern HPC Clusters. LB(n)
refers to the lower bound of n derived by Equation 17. Please refer to

Section 6.1 for cluster specifications.

RS(3, 2) OSU RI2 Cluster OSC Pitzer Cluster

unit: us 1KB 16KB 1MB 1KB 16KB 1MB

Tcomm 1.63 4.62 95 1.99 4.97 100.47

TEC 13 43 2244 12 41 2196

T k
EC

14 46 3087 13 44 3001

T k
XOR

1 4 300 1 4 253

LB(n) 3 3 1 3 3 1

4.3 Discussion

As a generic EC paradigm, TriEC does not only work on SmartNICs,

and it can also be generalized to other hardware technologies. This

paper mainly focuses on applying TriEC on SmartNICs, because:

(1) High-performance SmartNICs has low latency (i.e.,Tcomm is
small); thus, the lower bound of n derived from Equation 17
can be small even for small messages. Therefore, TriEC with

high-performance SmartNICs is more efficient.

(2) The capability of coherent EC calculation and networking is a

promising technique to deliver high performance to upper-

layer applications.

(3) It is more challenging to fully deliver potential performance

capability of SmartNICs to EC-based storage systems and

applications.

It will be our future work to apply TriEC on other hardware devices.

5 TriEC-Cache
To understand the performance implication of TriEC on real-world

storage systems and to show how to integrate TriEC into existing

storage systems, we implement a key-value store, namely TriEC-

Cache, based on memcached (v1.5.12).

5.1 Architecture

TriEC-Cache is designed with an interleaved architecture, which

interleaves multiple EC groups into a cluster to balance workload

and resource utilizations. Figure 7 depicts an architecture example

for RS(3,2). We refer to processes which store parity chunks as parity

processes, and processes which store data chunks as data processes.

As shown in Figure 7, each node in the cluster runs both parity

processes and data processes. Therefore, TriEC-Cache achieves

balance with respect to CPU, memory, and network utilization.

Each EC group has a leader, which serves requests from clients. To

achieve load balance, the leaders of multiple EC groups distribute
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around the cluster uniformly as well. Data processes and parity

processes belong to the same EC group are assigned to different

nodes to guarantee the best reliability and availability.

Client

Group 1

Group 2

Group 3 

Group 4

Group 5 

Node 1 Node 2 Node 3 Node 4 Node 5

D2
D3

P1

P2

P2 D2 D3 P1

P1 P2 D2
D3

D3 P1 P2 D2

D2
D3

P1 P2

L2
D1

L4
D1

L1

D1

L3
D1

L5
D1

set
(key,

 valu
e)

get(key)

get(key) 

with erasures 

Li Leader of ith group Di ith data chunk Pi ith parity chunk

Workflow of tripartite graph based ECDi Corrupt data chunk

Figure 7: Interleaved Architecture of TriEC-Cache

As illustrated in Figure 7, the node layout of each group is static

and pre-defined. For instance, in Group 1, Nodes 1, 2, and 3 store

D1, D2, and D3 in each stripe, respectively; and Nodes 4, 5 store
P1 and P2 in each stripe, respectively. Therefore, the role of each
node in a group for encoding procedure is static and pre-defined

as well. As shown in the example of “set(key, value)”, the nodes

storing D1, D2, and D3 are on the second layer, while the nodes
storing P1 and P2 are on the third layer. On the other hand, the
tripartite graph for decoding is dynamic and virtual; the role of

each node depends on the category and status of the chunk it stores.

For instance, in the example of “get(key) with erasures” shown in

Figure 7, D3 is assigned to be a second-layer node and responsible
for reconstructing missing chunk, because it is the node originally

storing the missing chunk. WhileD1,D2, and P1 become third-layer
nodes taking care of constructing and sending out intermediate

chunks because they store necessary chunks for recovery and are

chosen to participate in the decoding procedure. However, TriEC

is a flexible paradigm, and applications are free to choose their

strategies with TriEC.

In TriEC-Cache, there are two types of metadata to be main-

tained: (1) key-value mappings, and (2) metadata of EC groups, such

as topology information, connection states, etc. The metadata has

to be updated frequently and efficiently; thus, TriEC-Cache main-

tains metadata separately from data with the replication scheme.

Key-value mappings have to be stored with replication scheme,

such that any process in an EC group is functionally complete.

5.2 In-Band Recovery of TriEC

As revealed in Figure 5, recovery with BiEC only recovers the re-

quested chunks on the initiator side, and the nodes storing those

corrupt chunks are left unrecovered and unhealthy. Thus, appli-

cations need to design an out-of-band recovery mechanism to re-

construct the lost or corrupt data and to bring these nodes back

to healthy. Typically, there are two major out-of-band recovery

approaches: (1) the initiator who completes constructing corrupt

chunks writes them back to the corresponding nodes (as depicted

in Figure 8a), and (2) the node who realizes that itself is unhealthy

performs recovery in the background.

By contrast, TriEC provides an in-band recovery approach (as

shown in Figure 8b), such that the nodes involved in reconstruct-

ing corrupt chunks become healthy at the end. Applications co-

designed with TriEC do not have to design other mechanisms to

recover unhealthy nodes and thus perform more efficiently.

To evaluate TriEC-Cache, we also implement BiEC on top of

memcached (v1.5.12). To make fair comparisons, we choose write-
back as the out-of-band recovery mechanism to make all unhealthy

nodes recovered after decoding, e.g.,N 11 writes the recovered chunks

to N 21 and N
2
k+1

in parallel through Remote Direct Memory Access

(RDMA) channels. The choose of write-back approach is based

on the fact that write-back with a high-performance network is

simple and fast, which can outperform the background-recovery

counterpart.
...

...

w
rite back

(a) Out-of-Band Recovery (BiEC)

...
...

...

(b) In-Band Recovery (TriEC)

Figure 8: Overview of Out-of-Band and In-Band Recoveries

5.3 Implementation and Optimization

TriEC-Cache supports two basic operations: value ← get(key) and

set(key, value), where key and value are arbitrary strings. The work-

flow of set and get operations are depicted in Figure 7.

When a leader receives a set(key, value) request from a client, it

first stores the metadata, which is a record of {key, size of value}, and

then starts a TriEC encoding procedure. The topology of all involved

processes is a tripartite graph. Take L1,D1,D2,D3, P1, P2 in Group
1 for example, the corresponding tripartite graph is {{L1}, {D1,D2,
D3}, {P1, P2}}. Within the encoding procedure, L1 chunks the value
into k = 3 pieces and sends them to {D1,D2,D3}. Each process of
{D1,D2,D3} receives a data chunk, computesm = 2 intermediate
chunks, and delivers the intermediate chunks to {P1, P2}. Note that
the computation and transmission of intermediate chunks are per-

formed by the encode-and-send offload primitive. Each of {P1, P2}
gets k intermediate chunks and finally generates a parity chunk by
XORing the intermediate chunks. L1 only stores metadata, while
data processes and parity processes store both metadata and data.

The metadata stored in TriEC-Cache is a mapping of key→chunk.

When a request of get(key) comes to an EC group, the leader

fetches data chunks from all data processes in its EC group. If all

data chunks are healthy, the leader just responses the request with

these chunks. By contrast, if some chunks are corrupt, the fetch

request from leader triggers a TriEC decoding procedure. As shown
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in the example in Group 5, the topology of the processes partici-

pating in the decoding procedure is a tripartite graph as well (i.e.,

{{L5}, {D3}, {D1,D2, P1}}). After receiving the fetch request from
L5, D3 realizes that the chunk stored by itself is corrupt or miss-
ing, and then it speculatively reads from other processes. Other

processes including {D1,D2, P1} calculate the requested interme-
diate chunks and then send them back to D3. The calculation and
transmission of intermediate chunks are performed with the recv-

and-decode offload primitive. D3 proactively cancels other reads
once received sufficient intermediate chunks. Prior studies [7, 29]

indicate that proactive cancellation can help reduce bandwidth over-

heads of speculative reads. Since D3 has all necessary intermediate
chunks, it recovers the wanted chunk by XORing all the interme-

diate chunks. Once D3 is back to healthy, it responses the fetch
request from L5 with the reconstructed chunk. After the triggered
TriEC decoding completed, L5 responses the request normally as
usual.

There are two kinds of communication channels in TriEC-Cache.

Data transmissions among leaders, data processes, and parity pro-

cesses pass through RDMA channels, while other communications

go through socket channels (i.e., IPoIB on our platforms). This de-

sign approach enables TriEC-Cache to serve any kind of memcached

client without any code conversion on the client side, and upper-

layer applications can get benefit from TriEC transparently.

In our implementation, there are several optimization techniques

to overcome the limitations of Mellanox ConnectX-5 and to accel-

erate TriEC-Cache. Note that these optimizations are not relevant

to BiEC, such that they are not applied to the BiEC baseline.

5.3.1 Avoidance of Sending Unrequested Chunks. Our design and

implementation of TriEC highly depend on intermediate chunks.

The NIC generating intermediate chunks does not need to send

out the input chunks. However, with Mellanox’s encode-and-send

primitive, we have to assign a valid RDMA channel to each chunk

involved in EC. To avoid sending out the input chunks which are

not requested, an optimization of eliminating the work requests (i.e.,

nullifying the work requests) to the corresponding RDMA channels

is applied in our implementation.

5.3.2 EC Calculator Cache. With Mellanox’s EC offload APIs,

initializing EC calculators is very expensive. Mellanox’s driver reg-

isters a piece of memory for holding the EC matrix for every EC cal-

culator, and the memory cannot be pre-allocated and pre-registered

by upper-layer applications. To alleviate the expensive cost in ini-

tializing EC calculators, an EC calculator cache is used in our imple-

mentation. With EC calculator cache, calculations with the same

EC matrix are able to reuse the same calculator. Thus the use of

calculator cache saves a lot in calculator initializations. There are

two cache techniques: (1) static EC calculator cache, and (2) dy-

namic EC calculator cache. Static EC calculator cache means that

all calculators possibly to be used in the future are pre-initialized

at the very beginning, and thus delivers the best latency perfor-

mance to incoming calculations. However, the maximum number

of EC calculators in the flight supported by current-generation

Mellanox’s driver is limited (i.e., about 512). Therefore, the static

approach is not an appropriate design for large scale configurations

like RS(12, 4), etc. By contrast, dynamic EC calculator cache is an ap-
proach that allocates and initializes EC calculators on demand, and

the calculators in the cache are managed by the configured cache

eviction policy. Though the calculator initializations are completed

at runtime, the costs are amortized by incoming calculations. We

finally employ dynamic EC calculator cache in the implementation

of TriEC-Cache. We suggest that Mellanox can expose more flexible

APIs for calculator initializations in the future, and thus, the costs

of calculator initializations can be reduced to the least.

6 EVALUATION
In this section, we evaluate our proposed TriEC with microbench-

marks and evaluate its real-world implementation TriEC-Cachewith

extended YCSB. The base-lines for all experiments are BiEC and

our BiEC implementation on top of memcached (v1.5.12).

6.1 Experimental Setup

The experiments in the paper are conducted on two clusters (i.e., A

and B) as listed in Table 2. In this paper, we typically evaluate with

five widely-used EC configurations, i.e., RS(3, 2) [14], RS(6, 3) [12,
14, 30], RS(8, 3) [47], RS(10, 4) [10, 14], and RS(12, 4) [17].

Table 2: Specifications of Clusters

Specification OSU RI2 Cluster OSC Pitzer Cluster

Processor
Intel Broadwell

E5-2680 v4
Intel Skylake 6148

Frequency 2.4 GHZ 2.4 GHZ

RAM (DDR) 128 GB 192 GB

Interconnect
ConnectX-5

IB-EDR (100 Gbps)

ConnectX-5

IB-EDR (100 Gbps)

OS CentOS 7.4 Red Hat 7.5

OFED OFED-4.5-1.0.1 OFED-4.4-1.0.0

Scale up to 25 nodes up to 17 nodes

6.2 Microbenchmark

To evaluate the performance of different EC paradigms for NIC

offload, we propose a microbenchmark suite consisting of an en-

coding microbenchmark and a decoding microbenchmark. In the

encoding microbenchmark, each EC paradigm encodes a large in-

memory file which is filled up with random strings. While in the

decoding microbenchmark, an in-memory file is encoded first, and

several encoded parts are erased based on the specified configura-

tion, then each EC paradigm decodes the remaining parts to recover

the original file. The execution time of encoding/decoding the entire

file is reported by our microbenchmark suite.

Figures 9 and 10 illustrate the performance improvement gained

by TriEC for encoding and decoding workload across multiple EC

configurations and varied chunk sizes. Compared with BiEC for

encoding workload, TriEC can reduce the overall execution time

by up to 22.6%, 30.2%, 37.8%, 42.0% and 45.1% for RS(3, 2), RS(6, 3),
RS(8, 3), RS(10, 4) and RS(12, 4), respectively. On the other hand,
TriEC outperforms BiEC in terms of recovering m corrupt data
chunks by 1.18 − 2.33x for RS(3, 2), 1.24 − 2.26x for RS(6, 3), 1.18 −
2.17x for RS(8, 3), 1.21 − 2.16x for RS(10, 4), and 1.23 − 2.83x for
RS(12, 4). The encoding experiment for RS(3, 2)with the chunk size
of 512B in Figure 9 indicates that BiEC is also performing well with
small EC configurations and chunk sizes.



SC ’19, November 17–22, 2019, Denver, CO, USA Haiyang Shi and Xiaoyi Lu

0

1500

3000

4500

6000

51
2

2K
B

8K
B

32
K
B

12
8K
B

51
2K
B

2M
B

8M
B

1K
B

4K
B

16
K
B

64
K
B

25
6K
B

1M
B

4M
B

51
2

2K
B

8K
B

32
K
B

12
8K
B

51
2K
B

2M
B

8M
B

1K
B

4K
B

16
K
B

64
K
B

25
6K
B

1M
B

4M
B

51
2

2K
B

8K
B

32
K
B

12
8K
B

51
2K
B

2M
B

8M
B

(3,2) (6,3) (8,3) (10,4) (12,4)

BiEC
TriEC

E
xe

cu
tio

n 
T

im
e 

(m
s)

Figure 9: Encoding Performance Comparisons with Varied Configurations and Chunk Sizes (OSU RI2 Cluster). The (k,m) (e.g.,
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Figure 10: Performance Comparisons for Recoveringm Data Chunks with Varied Configurations and Chunk Sizes (OSU RI2
Cluster). The (k,m) (e.g., (3, 2)) refers to an EC configuration of RS (k,m). To recoverm data chunks, TriEC reduces the overall execution time by up to

57.1%, 55.7%, 53.9%, 53.7%, and 64.6% for RS (3, 2), RS (6, 3), RS (8, 3), RS (10, 4), and RS (12, 4), respectively. k +m + 1 nodes (one client, k +m servers).

In our microbenchmarks, there are always overlaps between

successive operations for both encoding and decoding. Thus the

microbenchmarks reveal the performance potential of TriEC. The

results qualitatively validate our performance model and Theo-

rem 2.

6.3 Performance in TriEC-Cache

We evaluate latency and throughput performance of TriEC-Cache

with the extended YCSB workloads (see Section 6.3.1 for more

details). In these experiments, we use k +m EC groups for RS(k,m)

to fully utilize server resources. For the experiments of evaluating

latency performance, there is only one client issuing requests.While

for the experiments of evaluating throughput performance, there

are 512 clients running simultaneously.

6.3.1 Workload. We extend YCSB [5] to generate the workloads

for our evaluations. Each workload generated by YCSB represents

a particular mix of operations (e.g., read, write, etc.), data sizes,

request distributions, and so on. In each workload, there is a table

of records, eachwith F fields. Each key in theworkloads is generated
by concatenating the table name and an identifier (e.g., usertable-

user8295266226408665858). While the values are compressed objects

consisting of multiple fields (named field0, field1, etc.). Each

field is a random string of ASCII characters of length L.
In order to evaluate the performance of read with chunk re-

coveries, we bring a new operation (i.e., read_with_erasures) into

YCSB. When TriEC-Cache receives a request of read_with_erasures,

it will reconstruct data chunks and response the request. During the

workload generation, whenever an operation is chosen to be read,

it will further determine whether the read operation should be a

read_with_erasures. In practice, failures are not always independent.

Some prior studies [11, 15, 24, 38] demonstrate thatWeibull distri-

butionwithWeibull shape parameter of 0.7–0.8 provides amuch bet-

ter fit for predicting failures on HPC systems. Hence, our extension

in YCSB determines whether a read should be a read_with_erasures

according to Weibull distribution. The study [38] also points out

that failure rates vary widely across systems and depend mostly

on system size and less on the type of hardware. Therefore, the

ratio of read_with_erasures operations to read operations in our

evaluations is fixed to 1%.

For the evaluations in this section, the request distribution of

each workload is Zipfian [9] distribution, such that some records

will be extremely popular while most records will be unpopular.

A prior study from Facebook [28] presents that the median value

sizes are 4.34KB for Region, and 10.7KB for Cluster. Therefore,
for our evaluations, we choose value sizes of 1KB, 4KB, and 16KB,
which are similar and representative to the value sizes in Face-

book’s memcached cluster. There are two kinds of workloads in

our evaluation: (1) fixed-size workload, in which the total work-

load size is fixed to be 2GB for each EC group, and (2) variable-
size workload. The fixed-size workload is the one used for eval-

uations if not explicitly mentioned. The read/write ratios of in-

volved workloads include equal-shares (r:w=50:50), read-mostly

(r:w=95:5), and read-only(r:w=100:0). If the workloads are con-

figured with read_with_erasures enabled, then 1% of read oper-

ations in equal-shares, read-mostly, and read-only workloads are

read_with_erasures operations.
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6.3.2 Latency and Throughput. As the read requests are handled

in the same way by both BiEC and TriEC, the read performance is

very similar. Thus, we do not specially discuss read performance in

this section.

Figure 11 shows that, compared with BiEC, TriEC reduces the

average write latency of RS(3, 2) by up to 23.2% and 12.0% for
equal-shares (r:w=50:50) and read-mostly (r:w=95:5) workloads, re-

spectively. Meanwhile, the improvement gained by TriEC for writes

with RS(6, 3) is up to 1.12x and 1.10x for equal-shares and read-
mostly workloads, respectively. The speedup achieved by TriEC for

the normal cases, i.e., there is no recovery occurring during reads,

follows the same trend as depicted in Figure 11; thus we do not

show them to save space.

On the other hand, the average latency of read_with_erasures is

prominently improved by TriEC as well. For RS(3, 2), the improve-
ment is 1.25 − 1.61x for equal-shares, 1.27 − 1.60x for read-mostly,

and 1.20 − 1.56x for read-only (r:w=100:0) workloads. For RS(6, 3),
TriEC achieves 1.24 − 1.40x, 1.22 − 1.32x, and 1.20 − 1.29x for

equal-shares, read-mostly, and read-only workloads, respectively.

Moreover, we evaluate the overall throughput performance of

TriEC-Cache for RS(6, 3) on 17 nodes as shown in Figure 13. Com-
pared with BiEC, TriEC speeds up the overall throughput perfor-

mance by up to 13.3% for equal-shares, 14.8% for read-mostly, and

13.9% for read-only workloads.

Since the requests from YCSB clients are distributed across all

the EC groups, and the percentages of write and read_with_erasures

requests are at most 50% and 1%, there are few overlaps between

write and read_with_erasures in these experiments. Therefore, the

performance improvement shown in this section mainly comes

from the parallelism of TriEC. In the future, we will integrate TriEC

into distributed file systems, in which there are more chances to

benefit from the overlapping capability of TriEC.

While prior evaluations are evaluated with the fixed-size work-

load, we also conduct performance evaluations with the variable-

size workload on OSU RI2 Cluster. The throughput numbers are

taken with the equal-shares (50:50) benchmark in YCSB for RS(6, 3),
in which the value size is fixed to 4KB, and 1% of reads are with
three erasures. The total number of keys are 9M , 18M , and 36M
(i.e., total workload sizes are 36GB, 72GB, and 144GB). In our ex-
periments, both BiEC and TriEC perform better if more keys are

stored in each EC group. Since the request distribution is Zipfian,

the clients have more chance to request different servers in parallel

if there are more keys; thus, the throughputs go up. Compared with

BiEC, TriEC shows up 11% to 14% performance improvement.

6.3.3 Full-node Recovery. We evaluate the full-node recovery

performance of TriEC-Cache forRS(3, 2) using 16KB value size with
the variable-size workload. As shown in Figure 14, TriEC reduces

the execution time by up to 28% to fully recover one node, and is

demonstrated to be scalable with respect to the number of keys to

be reconstructed.

6.3.4 Calculator Cache. Calculator cache is an important opti-

mization in TriEC-Cache to alleviate the expensive cost in initializ-

ing EC calculators with Mellanox’s EC offload APIs. We conduct

experiments to evaluate the average latencies of read_with_erasures

with different calculator cache technologies. The performance num-

bers are taken with the read-only benchmark in YCSB for RS(3, 2),

in which the value size is fixed to 1KB, and the total number of oper-
ations is 300K . As revealed in Figure 15, the uses of static cache and
dynamic cache reduce the average latency of read_with_erasures

for RS(3, 2) by 93.1% and 86.5%, respectively.

7 RELATEDWORK
Erasure Coding for Storage Systems Erasure coding has been

extensively adopted in many widely-used storage systems [1, 2,

12, 14, 20, 27, 30] to take advantage of the capability of delivering

higher data reliability and durability with prominent lower storage

overhead. Towardsmaking EC viable for large scale storage systems,

multiple works along different directions have been proposed. One

direction is to reduce the recovery overhead by the assistances of

local parities, such as Local Reconstruction Codes in [17] and Locally

Repairable Codes in [37]. Meanwhile, several approaches to reduce

the repair bandwidth (e.g., [8, 16, 21, 26, 34]) have been proposed.

On the other hand, after several work of applying EC for Big Data

and Cloud storage systems (e.g., [3, 4, 11, 13, 19, 23, 33, 46]), EC is

also being employed to design resilient key-value store systems,

including, Cocytus [48], EC-Cache [32], Hybris [44], BCSore [22],

and [39, 43]. This increased focus on EC for storage resilience serves

as a motivation for this paper.

Erasure Coding Offload With the emergence of the next gener-

ation hardware which is capable of offloading computation, several

erasure coders have been proposed to leverage the next-generation

hardware to accelerate EC calculations fully. For instance, Gibral-

tar [6] is a famous GPU-based erasure coder which takes advantage

of GPU’s massively multicore architecture. After comprehensive

characterizing erasure coders on next-generation hardware [40], we

found several critical limitations of current-generation EC NIC of-

fload schemes on modern SmartNICs, such as Mellanox ConnectX-4

(and later) [25]. Motivated by the insights, we propose TriEC to

leverage the capabilities of high-performance network adapters

effectively.

8 CONCLUSION AND FUTUREWORK
In this paper, we discussed three identified limitations of current-

generation EC NIC offload schemes on modern SmartNICs (e.g.,

Mellanox ConnectX-5), such as bipartite-based EC encoding and

decoding (BiEC) which underutilize the networked computing re-

sources, missing the support of receive-and-decode primitive, and

semantic mismatch between application requirements and sup-

ported primitives. To address these limitations, this paper proposes

a new EC NIC offload paradigm based on the tripartite graph model,

namely TriEC. TriEC decomposes a full EC calculation pipeline into

three stages and each stage only executes a subset of EC tasks in par-

allel. TriEC supports both encode-and-send and receive-and-decode

operations efficiently. We prove that TriEC is correct and has the

potential to deliver better performance than current-generation

BiEC based NIC offload schemes. Experiments show that TriEC

outperforms BiEC by up to 1.82x and 2.33x for encoding and recov-

ering, respectively. With extended YCSB workloads, TriEC reduces

the average write latency by up to 23.2% and the recovery time

by up to 37.8% even with only 1% failure occurrences under the

Weibull distribution. Moreover, TriEC outperforms BiEC by 1.32x

for a full-node recovery with 8 million records. The performance

evaluations qualitatively validate our performance model.
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In the future, we plan to extend TriEC along two directions: (1)

applying TriEC on other hardware devices (e.g., CPUs and GPUs),

or even combining TriEC with our previous work Multi-Rail EC [41,

42] to take advantage of multiple EC-capable devices in parallel,

and (2) co-designing TriEC with other types of storage systems,

such as distributed file systems and cloud storage systems.
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Figure 15: Performance Impact of Calculator Cache (OSU
RI2 Cluster). Six nodes (one client, five EC groups).
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