
UMR-EC: A Unified and Multi-Rail Erasure Coding Library for
High-Performance Distributed Storage Systems
Haiyang Shi, Xiaoyi Lu, Dipti Shankar, and Dhabaleswar K. (D.K.) Panda

Department of Computer Science and Engineering, The Ohio State University
{shi.876,lu.932,shankar.50,panda.2}@osu.edu

ABSTRACT
Distributed storage systems typically need data to be stored re-
dundantly to guarantee data durability and reliability. While the
conventional approach towards this objective is to store multiple
replicas, today’s unprecedented data growth rates encourage mod-
ern distributed storage systems to employ Erasure Coding (EC)
techniques, which can achieve better storage efficiency. Various
hardware-based EC schemes have been proposed in the commu-
nity to leverage the advanced compute capabilities on modern data
center and cloud environments. Currently, there is no unified and
easy way for distributed storage systems to fully exploit multiple
devices such as CPUs, GPUs, and network devices (i.e., multi-rail
support) to perform EC operations in parallel; thus, leading to the
under-utilization of the available compute power. In this paper, we
first introduce an analytical model to analyze the design scope of
efficient EC schemes in distributed storage systems. Guided by the
performance model, we propose UMR-EC, a Unified and Multi-Rail
Erasure Coding library that can fully exploit heterogeneous EC
coders. Our proposed interface is complemented by asynchronous
semantics with optimized metadata-free scheme and EC rate-aware
task scheduling that can enable a highly-efficient I/O pipeline. To
show the benefits and effectiveness of UMR-EC, we re-design HDFS
3.x write/read pipelines based on the guidelines observed in the
proposed performance model. Our performance evaluations show
that our proposed designs can outperform the write performance
of replication schemes and the default HDFS EC coder by 3.7x - 6.1x
and 2.4x - 3.3x, respectively, and can improve the performance of
read with failure recoveries up to 5.1x compared with the default
HDFS EC coder. Compared with the fastest available CPU coder (i.e.,
ISA-L), our proposed designs have an improvement of up to 66.0%
and 19.4% for write and read with failure recoveries, respectively.

ACM Reference Format:
Haiyang Shi, Xiaoyi Lu, Dipti Shankar, and Dhabaleswar K. (D.K.) Panda.
2019. UMR-EC: A Unified and Multi-Rail Erasure Coding Library for High-
Performance Distributed Storage Systems. In The 28th International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC ’19),

This research is supported in part by National Science Foundation grants CCF#1822987,
CNS#1513120, IIS#1636846, and OAC#1664137.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6670-0/19/06. . . $15.00
https://doi.org/10.1145/3307681.3325406

June 22–29, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3307681.3325406

1 INTRODUCTION
Replication has been a key technique of reliable distributed storage
systems for years [8, 46, 49]. Multiple replicas stored at several loca-
tions in the system keep sufficient redundancy to tolerate individual
failures. Since the data being generated increases rapidly every day,
petabytes of data in today’s distributed storage systems are becom-
ing common. Such unprecedented data growth rates encourage
modern distributed storage systems to employ efficient storage
schemes. Some popular systems, such as Google Colossus [9], Face-
book HDFS-RAID [7, 41], the Quantcast File System [30] and Mi-
crosoft Azure Storage System [12], are transforming to the use
of Erasure Coding (EC) scheme, which offers high reliability and
availability at a prominently low storage overhead [40, 48].

Prevalent EC techniques such as Reed-Solomon (RS) [31, 39]
code and its variations have been widely used in many distributed
storage systems (e.g., HDFS 3.x [10], Ceph [2], QFS [30], Google
Colossus [9], Facebook f4 [28], and Baidu Atlas [17]). RS codes
are based on Galois Field arithmetic [32] (termed as GF (2w)), and
they are Maximum Distance Separable (MDS); thus enabling us to
recover data from any k of the (k +m) words in case of using an
RS (k ,m) coder. This EC-based resilient scheme can tolerate up to
m node failures with a storage overhead ofm/k . In contrast, data
replication needsm+1 replicas, and the storage overhead is as high
asm. For example, the RS(6,3) EC scheme has a storage overhead
of 50% and delivers the same fault-tolerance as 4-way replication
that incurs a 3x overhead. However, EC encoding and decoding are
time-consuming operations, which prevents EC from being used as
the primary fault-tolerance mechanism.

To overcome the high computational costs involved with RS
erasure coding, two broad categories of coders have been proposed
in the community to take advantage of modern hardware capabili-
ties: (1) EC-Onload, where optimized host-based libraries such as
Jerasure [34] and Intel ISA-L [14] are employed, and, (2) EC-Offload,
wherein the EC computation tasks can be offloaded to accelerators
(e.g., GPGPU [4]) or high-performance network devices (e.g., Host
Channel Adapters (HCA) of Mellanox ConnectX-4 and later [24]).
While these hardware-optimized libraries can potentially facilitate
EC to be employed as a viable choice for fault-tolerance in modern
distributed storage systems, currently there are two major issues to
consider: (1) these optimized EC libraries are strictly designed and
optimized for specific hardware, and have varied performance char-
acteristics and APIs, and, (2) there is a significant mismatch between
the semantics of existing EC library interfaces and those that are
desired by the upper-layer distributed storage systems. These issues
in turn make it hard for users to optimize their storage systems by

Cloud Systems HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

219

https://doi.org/10.1145/3307681.3325406
https://doi.org/10.1145/3307681.3325406

utilizing heterogeneous EC libraries in a unified manner, because it
would require maintaining large volumes of metadata information
necessary to store and retrieve the distributed data blocks. More
importantly, due to hardware dependencies of these optimized EC
libraries, none of the current-generation storage systems can ex-
ploit multiple devices like CPUs, GPUs, and network devices in
parallel (i.e.,Multi-Rail Support) on modern data centers and clouds.
These drawbacks leave the available high-speed hardware signifi-
cantly under-utilized and adversely affect the performance of the
EC-based storage system.

In this paper, we first introduce a performance model to identify
the challenges and opportunities in existing distributed storage
systems. Guided by the performance model, we propose UMR-EC,
a Unified and Multi-Rail Erasure Coding library, which provides
upper-layer applications and frameworks with a unified way to ex-
ploit heterogeneous EC coders. UMR-EC comprises three fundamen-
tal building blocks for delivering high-speed encoding/decoding.
The first building block is the multi-rail based EC scheme, which
enables applications to exploit the heterogeneous EC capabilities
of modern data centers in parallel. Secondly, the uniform and asyn-
chronous interfaces of UMR-EC abstract all the functionalities re-
quired by the distributed storage system to access different types of
hardware-specific coders, and can be used to design a heterogeneity-
aware I/O pipeline that can match the high-throughput require-
ments in distributed storage systems. The third building block is
the high-performance UMR-EC runtime, which enables metadata
free scheme and EC rate-aware task scheduling for performing EC
operations.

To demonstrate the effectiveness of our library, we co-design
HDFS 3.x with UMR-EC (i.e., HDFS-UMR). We see that the asyn-
chronous semantics of UMR-EC APIs can match well with the
high-throughput requirements from HDFS. Our co-designed I/O
pipelines with UMR-EC can outperform default HDFS with both
replication and EC schemes. Performance evaluations show that
HDFS-UMR can outperform the write performance of replication
schemes and the default HDFS EC coder by 3.7x - 6.1x and 2.4x -
3.3x, respectively, and can improve the performance of read with
failure recoveries by up to 5.1x compared with the default HDFS EC
coder. Compared with the fastest available CPU coder (i.e., ISA-L),
our designs have an improvement of up to 66.0% and 19.4% for write
and read with failure recoveries, respectively.

Overall, this paper makes the following key contributions:

(1) We introduce an analytical model as a guide for designing
efficient single-/multi-rail EC schemes and co-designing I/O
pipelines of distributed storage systems.

(2) We propose a unified and multi-rail EC library (i.e., UMR-EC)
which can almost achieve the sum of peak throughputs from
multiple devices, such that it provides high-performance and
high-productivity EC-based schemes for application frameworks
on various advanced devices.

(3) We co-design HDFS 3.x with UMR-EC to enable more efficient
HDFS write and read pipelines for Big Data workloads; with
no additional metadata overhead for exploiting CPU, GPU, and
HCA resources in parallel.

(4) We present extensive evaluations for UMR-EC and HDFS-UMR
to prove that, through our designs, EC can be used as the pri-
mary choice for next-generation distributed storage systems.
To the best of our knowledge, this is the first work to propose

a unified EC library that can support efficient multi-rail encoding
and decoding across different hardware platforms.

2 MODELING AND GUIDANCE
In this section, we outline the major challenges and opportunities of
exploiting multi-rail EC in distributed storage systems via latency
performance modeling.

2.1 Performance Models of Write and Read
Many distributed storage systems (e.g., HDFS) have incorporated
EC support in their write and read pipelines. Figures 1a and 1b
present the high-level workflows for write and read operations
in HDFS 3.x 1, respectively. During HDFS write, the HDFS client
first computes the parity chunks, and then writes the data and
parity chunks to a distributed set of nodes, as shown in Figure 1a.
During HDFS read, specifically with node failures, the HDFS client
determines how to read sufficient data or parity chunks to recover
the original data. The write/read flows depicted in the figure are
quite common in other distributed storage systems as well [2, 30].

(a) Write (b) Read with Two Node Failures

Figure 1: Erasure Coding in HDFS 3.x. The C, G, and H under each
DataNode refer to CPU, GPU, and IB HCA, respectively.

2.1.1 Modeling Write Latency. In an EC-based distributed stor-
age system, as shown in Figure 1a, a considerable portion of time
is spent on encoding data chunks (denoted by Tenc), in addition to
the time consumed by other computation (e.g., serialization) and
communication (denoted respectively by Tother 2 and Tcomm). Tenc
is the cost we have to pay to leverage EC technologies in distributed
storage systems. Suppose scheme EC(k,m) is employed in the sys-
tem, the encoding operation splits a data block of size D into k
data chunks, and generatesm parity chunks of size D/k . Therefore,
Tcomm and Tenc can be represented as functions of value D. Finally,
the latency of writing a data block of size D can be expressed as
follows:

Tw(D) = Tenc(D) +Tcomm(D) +Tother (1)

2.1.2 Modeling Read Latency. Similar to write latency, the read
pipeline (depicted in Figure 1b) can also be partitioned into de-
coding operations (denoted as Tdec), communication, and other
computation. For EC(k,m) scheme, if any chunk corruptions occur,
1Hadoop 3.0.0 alpha2
2Tother may or may not relate to the size of data chunks.

Cloud Systems HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

220

k out of k +m chunks will be necessary to recover the original data
chunks. Such that Tdec is also a function of value D. Therefore, the
model of read latency and decoding latency can also be denoted as:

Tr(D) = Tdec(D) +Tcomm(D) +Tother (2)

where Tdec(D) = 0 if there are no data corruptions.

2.1.3 Major Bottleneck Analysis. The EC-based scheme will in-
cur many activities in the write and read pipelines, such as encod-
ing/decoding, network transfer, and other computation. Without
high-performance designs for the write/read pipelines, the stor-
age systems may not be able to deliver the desired performance
for the applications. To quantify the overheads of computation
in existing distributed storage systems (e.g., HDFS), we conduct
some experiments3 to compare the write and read performance of
replication and default EC (i.e., a Java-based Reed-Solomon (RS)
implementation) in HDFS 3.x. The results are shown in Table 1.

Table 1: HDFS 3.xWrite and Read Throughput Comparisons
between Replication and EC. The higher the number, the better the
throughput. The number in the parentheses indicates the average number
of data blocks residing in the failed DataNodes. The boxes left blank mean
that they are not able to be recovered from the failures.

Unit: MB/s Write Read
w/o failures 1 failure 2 failures 3 failures 4 failures

3-Rep 247.05 1344.18 997.31 653.17 - -(104) (249)

RS(3, 2) 229.31 1609.83 850.92 467.71 - -(75) (151)

4-Rep 211.43 1011.22 761.92 701.12 646.01 -(139) (330) (520)

RS(6, 3) 200.05 1855.07 774.17 498.79 311.14 -(70) (137) (206)

5-Rep 166.08 945.14 805.58 769.92 754.94 582.43
(178) (353) (616) (856)

RS(10, 4) 170.56 1724.06 798.43 445.75 322.58 232.50
(61) (125) (191) (252)

From Table 1, it can be seen that the default EC implementation
(i.e., HDFS-EC) has a similar write performance as compared to
replication across multiple configurations. Since we employ the fast
interconnect (i.e., IB EDR, 100Gbps) and RAMDisk to eliminate bot-
tlenecks in communication and I/O paths as much as possible, we
can infer that the poor performance is caused by the EC operation
overheads. For write experiments, we implement a no-overhead EC
scheme (do nothing in EC operations to mimic the behavior of the
theoretically fastest coder) in HDFS to predict the optimal perfor-
mance for HDFS write. We observe that the no-overhead EC can
achieve a throughput of 508 MB/s, which demonstrates that there
is a considerable room for potential performance improvement of
write operations.

With respect to HDFS read performance, we observe that the
default EC scheme performs well in the case on no node failures.
When node failures occur, we see that the performance of EC-based
read degrades significantly, especially as the number of failures
increases. Obviously, the major bottleneck for EC-based reads are
3These numbers are taken on Cluster B. The cluster specification is introduced in
Section 5. InfiniBand and RAMDisk are used for these experiments for achieving the
highest performance.

the decoding operations. Therefore, the optimal performance for
HDFS reads would be to achieve performance similar to the no
failure scenario.

2.2 Challenges and Opportunities
Based on the proposed performance model in Section 2, we analyze
challenges and opportunities in further improving the performance
of write and read pipelines in distributed storage systems.

2.2.1 Leveraging Multiple Devices Simultaneously. As empha-
sized in 2.1.3, the major bottleneck in incorporating EC scheme
into write/read pipelines is the time-consuming EC operations (i.e.,
Tenc(D) and Tdec(D)). With the fact that modern data centers are
equipped with multiple advanced hardware supporting EC oper-
ations, as shown in Figure 1, we will assess the challenges and
opportunities in resolving the major bottleneck by leveraging mul-
tiple devices.

These advanced hardware devices (e.g., multi-core CPUs, GPUs,
and InfiniBand/IB) provide a huge potential for reducing the over-
head of time-consuming EC operations. A prominent example is
the widely used Intel’s Intelligent Storage Acceleration Library
(ISA-L) [14] that accelerates EC-related linear algebra calculations
through the use of advanced SIMD instruction sets like SSE, AVX
and AVX2 [13, 15]. Similarly, a new feature called Erasure Coding
Offloading (EC Offloading) [25] has been introduced in Mellanox
InfiniBand (IB) ConnectX-4 and later adapters. With this feature, EC
calculations can be offloaded to the Host Channel Adapter (HCA),
which can significantly reduce CPU consumption without sacrific-
ing performance.

Table 2: Example of Onload and Offload EC Coders

Approach Erasure Coder Specific Hard- Peak Performance
ware Support (encode / decode)

Onload
Jerasure CPU 17.4/10.9 GB/s †

ISA-L CPU with 31.2/29.7 GB/s †

SSE/AVX

Offload
Mellanox-EC IB NIC with 8.5/7.6 GB/s ‡

EC Offload

Gibraltar GPU 11.5/10.6 GB/s †

1) Note that Jerasure is compiled without SSE support, such that Jerasure
represents onload erasure coder with common instruction sets while ISA-L
with advanced instruction sets.
2) The peak performance labeled with † and ‡ is taken on Clusters A and
B, respectively. The cluster specification is in Section 5. We cannot conduct
experiments on the same cluster, because 1) Cluster A has CPUs, GPUs, but
not the latest ConnectX-5 IB NICs, which are now the only NICs supporting
EC offload under GF (28), and 2) Cluster B has CPUs, the latest ConnectX-5
IB NICs, but not GPUs.

To better understand their performance characteristics and as-
sess the opportunities to leverage multiple hardware devices, we
design a multi-threaded EC benchmark that measures the peak
encoding and decoding throughput of these popular EC coding
libraries. Table 2 summarizes these results. In Table 2, we observe
that: Onload and offload coders have varied performance charac-
teristics and APIs, and, (2) CPU-optimized onload coders such as
ISA-L can give the best performance, while, offload-based coders

Cloud Systems HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

221

(GPU/HCA) perform about 2.8 to 3 times worse than the fastest
onload coders. However, we also observe that onload coders nearly
utilize 100% of the CPU, and as expected the offload coders have
much lower CPU utilization (near to 0%).

Given that multiple advanced hardware devices are offering the
capability of performing EC operations, Tenc(D) and Tdec(D) in
Equation 1 and 2 can be presented more precisely. Let C denote
the collection of best EC coders implemented for these hardware
devices (e.g., CPU, GPU, and IB HCA). Such that the best encoding
and decoding latencies can be achieved by employing the most
powerful hardware device in the system is:

Tenc(D) = min
c ∈C

{
T cenc(D)

}
(3)

Tdec(D) =

0 if no corruptions,
min
c ∈C

{
T cdec(D)

}
otherwise (4)

where T cenc and T cdec is the encoding latency and decoding latency
of coder c (c ∈ C), respectively.

Definitely, with exploiting the most powerful hardware device
in the distributed storage system, i.e., by substituting Tenc(D) and
Tdec(D) with Equation 3 and 4 respectively, Equation 1 and 2 can
be improved to some extent. From the overall storage system per-
spective, however, we infer that leveraging the available compute
capabilities like CPUs, GPUs, and network devices in parallel, can
achieve the potentially optimal performance; in contrast to em-
ploying just a single EC coder (e.g., ISA-L only). The approach of
leveraging multiple available devices in parallel to increase paral-
lelism is named multi-rail in this paper.

Let Dc denote the data size dispatched to EC coder c , where
c ∈ C . Since Tenc and Tdec (if corruptions occur) have the same
form of equations, we use Tec to indicate both Tenc and Tdec in this
section (Tec_mr refers to latency of multi-rail approach). Such that
the EC operation (including encoding and decoding) latency can
be rewritten as follows:

Tec_mr(D) = max
c ∈C

{
T cec(Dc)

}
(5)

where Dc ⊂ D, ∪
c ∈C

Dc = D, and ∀i, j Di ∩ Dj = ∅.
For a system with CPU, GPU, and IB HCA coders, suppose

DC, DG, DH denote the workload scheduled to CPU, GPU, and
IB HCA, respectively, and TCec, TGec , TH

ec denote the execution time
spent on CPU, GPU, and IB HCA, respectively. Then, Tec_mr(D) =
max

{
TCec(DC),T

G
ec (DG),T

H
ec (DH)

}
. This means all available devices

are fully exploited to increase the data parallelism in performing
EC operations.

Equation 5 indicates that as long as the workload is dispatched
to multiple coders such that they can work together with their peak
throughput and complete tasks scheduled to them at the same time,
the optimal latency can be obtained. Therefore, the optimal EC
operation latency of multi-rail approach is:

Tec_mr(D) =
D∑

c ∈C
Thrc

<
D

max
c ∈C

{Thrc }
= Tec(D) (6)

where Thrc is the throughput of coder c (c ∈ C). The challenge is
how to achieve the sum of peak throughput from multiple devices
in a real system.

2.2.2 Full Overlap among EC, Communication and Computation
in Write/Read Pipelines. By exploiting the multi-rail approach, we
have already achieved optimal performance for EC operations (i.e.,
Tenc and Tdec). However, Equation 1 and 2 still reveal chances to
further improve the performance of write and read pipeline. To
this end, we perform an in-depth analysis of the HDFS write and
read pipelines with existing EC coders. We find that there is a big
mismatch between the semantics of the existing EC coders and
the desired semantics of upper-layer pipeline designs, which pre-
vents the EC operations in current schemes to be fully overlapped
with other activities (computation and communication) in the read-
/write pipelines. This leads us to rethink about the write and read
performance model with non-blocking support.

If the non-blocking semantics are introduced into the perfor-
mance model of EC operations, then the costly EC operations can
be removed from the critical path of the write pipeline. Such that
the write latency can be reduced to:

Tw_nb(D) = max {Tenc(D),Tcomm(D) +Tother} (7)

Similarly, the read latency becomes:

Tr_nb(D) = max {Tdec(D),Tcomm(D) +Tother} (8)

Given that the chunk corruptions are not supposed to happen every
time, this approach becomes trivial for read pipeline. Suppose one
corruption occurs for every 100 reads, then for the 99 healthy reads,
Tr_nb(D) = max {0,Tcomm(D) +Tother} = Tcomm(D) + Tother =
Tr(D). Such that, the benefit obtained by the only one degraded
read is amortized by 100 reads and thus becomes minor. Hence,
it is not worthy to incorporate this design into read pipeline in a
distributed storage systems.

To further improve overlapping, we find the entire write and read
pipelines can be partitioned into three functional activities or stages
(i.e., EC operations, communication, and other computation) based
on Functional Partitioning (FP) (similar to Staged Event-Driven
Architecture (SEDA)) [18, 50]. The FP-based approach enables over-
lapping to occur among EC operations, communication, and other
computation through dedicated thread pools on separate process-
ing units. This motivates us to think how to co-design write/read
pipelines in existing distributed storage systems (e.g., HDFS) with
FP principle to obtain the best overlapping. The detail of the FP-
based design will be discussed in Section 4. By utilizing functional
partitioning, the write and read latencies can be optimized further
as follows:

Tw_fp(D) = max {Tenc(D),Tcomm(D),Tother}

Tr_fp(D) = max {Tdec(D),Tcomm(D),Tother}
(9)

2.2.3 Summary. To summarize, the key challenges to enable
distributed storage systems to thoroughly benefit from the vari-
ous advanced devices and CPUs with EC support on modern data
centers and cloud are:
(1) How to achieve the sum of peak throughput from multiple

devices in a real system?
(2) How to introduce non-blocking semantics to EC operations

with high-performance and high-productivity?
(3) How to co-design write/read pipelines with FP principle to

achieve the best overlapping in real-world distributed storage
systems?

Cloud Systems HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

222

The in-depth modeling analysis motivates us to rethink the EC
coding architecture and the corresponding I/O pipeline designs in
distributed storage systems. To address these challenges identified,
we discuss our designs in the following two sections (Section 3 and
Section 4).

3 UMR-EC DESIGN
In this section, we present the programming model and designs
employed in UMR-EC as guided by the analysis in Section 2.

3.1 Programming Model
To program with various EC coders in a high-productivity manner,
we highlight two major needs from the application perspective:
(1) We need unified interfaces and data structures for different EC
coders to hide all the platform-specific details, so that applications
can easily use these coders in a unified manner. (2) To achieve the
goal of efficiently utilizing heterogeneous hardware onmodern data
centers, asynchronous semantic needs to be introduced to make EC
operations overlap with other computations and communications
activities, such that the computation overhead of EC operations
can be hidden in the write/read pipelines.

Motivated by the optimization opportunities discussed in Sec-
tion 2.2, we propose our non-blocking programming model into
EC operations. The proposed design separates one EC operation
into issue and completion phases, which enable the upper-layer
applications to proceed with other tasks, such as computations or
communications, while waiting for the issued encoding/decoding
requests to be completed. Furthermore, UMR-EC manages hetero-
geneous hardware in fine-grained strategy on behalf of upper-layer
applications. In this way, the UMR-EC library provides flexibility
and chances to achieve more overlapping and more efficiency in
utilizing underlying hardware at the upper-layer applications.

As listed in Figure 2, we design two blocking APIs (i.e., encode
and decode), two non-blocking APIs (i.e., iencode and idecode), two
sets of tracking functions (i.e., test and wait), and the corresponding
supporting data structures.

API Description

ECFuture iencode(Matrix& data, Matrix& parities,
size_t chunkSize);
ECFuture idecode(Erasures& erasures, Matrix& data,
Matrix& parities, size_t chunkSize);

Non-blocking
encode and decode

void wait();
void wait(const ECFuture& future);
void wait(vector<ECFuture>& futures);

Blocking wait on all
or partial submitted
requests to be
completed

bool test();
bool test(const ECFuture& future);
bool test(vector<ECFuture>& futures);

Non-blocking test
whether all or partial
submitted requests
are completed

Figure 2: Proposed APIs

Our proposed APIs are beneficial to distributed storage systems
in the following ways:
(1) The proposed approach offers opportunities to the distributed

storage systems to overlap the costly EC computations in the
existing write/read pipelines with slight modifications. One

real-world example of co-designing HDFS 3.x with UMR-EC is
given in Section 4.

(2) The test and wait APIs provide two different approaches to
track and check the progress of submitted EC tasks. The upper-
layer applications can choose a proper one to deal with request
completions.

(3) The proposed APIs enable upper-layer applications to employ
heterogeneous hardware platforms via two coder selection
strategies: (a) Single-rail mode, wherein the user can post EC
tasks to a single specific EC coder of choice, using either block-
ing or non-blocking APIs, and, (b) Multi-rail mode, wherein
multiple heterogeneous coders are leveraged automatically and
concurrently, based on the underlying hardware, through the
use on non-blocking APIs. More importantly, if the application
framework is designed with our proposed APIs, they can easily
switch between these two modes by a configuration parameter.

3.2 Runtime Architecture
Our UMR-EC library fully implements the above-mentioned pro-
gramming model with C/C++ and Java bindings. The ErasureCo-
derManager in the UMR-EC library provides pluggable interfaces
for adding new coders to UMR-EC in a convenient manner. For
example, to add a new Mellanox EC offloading coder into UMR-EC,
we only need 58 LOC to achieve it. Specifically, in the multi-rail
mode, the ErasureCoderManager will auto-select a set of EC coders
based on available hardware and their performance characteristics,
for maximizing performance for the upper-layer application. In the
following two sub-sections, we highlight two key techniques in
this layer, which bring performance benefits to multi-rail based EC
operations.

3.3 Metadata-Free Multi-Rail EC
As described before, current storage systems use well-known EC
coding schemes such as Reed-Solomon [39]. However, these RS-
based EC coders, which might be implemented with variant Galois
Field arithmetics (e.g., GF (2w)) or generator matrices, could gener-
ate different results though given identical input. This is known as
the cross-compatibility issue among different EC coders. To exploit
multi-rail EC support efficiently, there are two ways to handle the
cross-compatibility challenge.

3.3.1 Metadata-Based Design. A generic approach is to track
the EC type of each block or chunk groups by the assistance of a
central or distributed metadata server. In this design, data chunks
are split into chunk groups. Each chunk group is encoded and
decoded using the same EC coder. Therefore, the metadata server
maintains a per-chunk-group metadata information entry of the
following format (#chunk group, EC type), as shown in Figure 3a.
For instance, a metadata record (29568, Gibraltar) indicates that the
chunk group with ID 29568 is encoded by the EC coder, Gibraltar,
and will be decoded using the same EC coder. Now, in terms of
performance, the choice of the number of chunks per group can
become a trade-off between increased data parallelism andmetadata
storage overhead. Increasing the number of groups can help us
exploit available compute resource, but this comes at the cost of
higher metadata overhead. Also, in case the required hardware is
unavailable during decoding, this design cannot easily resolve the

Cloud Systems HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

223

issue. However, this approach enables us to plug-in and leverage
any new EC coder, irrespective of the type of EC scheme it employs.

3.3.2 Metadata-Free Design. The metadata-based approach is
generic but with high overhead of maintaining and retrieving meta-
data. Therefore, we come up with a metadata-free design to elimi-
nate the overhead. The requirement of obtaining metadata-free is
to guarantee cross-compatibility among all available RS-based EC
coders, which means that all involved EC coders generate equiv-
alent output once given the same input. UMR-EC achieves cross-
compatibility by unifying (1) generator matrix, and (2) word size
“w” in all plugined RS-based EC coders without any negative effect
on performance. With this key idea, we design a metadata-free EC
engine, as shown in Figure 3b, that can encapsulate the different
capabilities of underlying hardware into a single highly available
EC service. This does not only enable zero metadata overhead, but
also enables us to optimize the overlap of I/O operations within the
read/write pipelines more efficiently. In addition to this, in case the
required hardware is unavailable during runtime the UMR-EC can
continue to provide highly available service by leveraging any of
its compute resources. From the perspective of upper-layer applica-
tions, it can transparently leverage the underlying heterogeneity
with the proposed unified APIs.

(a) Metadata-Based Approach (b) Metadata-Free Approach

Figure 3: Comparison of Multi-Rail Design Alternatives. A
metadata record (29568, Gibraltar) indicates that the chunk group with ID
29568 is encoded by Gibraltar, and will be decoded with the same coder.

Note that some hardware devices (e.g., IB) have limitations on EC
support like different word size support. In case there are devices
which cannot be unified to support metadata-free approach, UMR-
EC will perform a cross-compatibility check during the installation
phase, and only selects the compatible devices to perform multi-rail
EC operations. In the worst case, UMR-EC just enables single-rail
EC, which is still more efficient than other EC libraries because of
overlapping. This could be a limitation on metadata-free design, but
note that the metadata-free approach is promising since we believe
supporting the same generator matrix and word size by future
devices will be a norm. For instance, in this paper, we successfully
enabled this feature across two different clusters (see Section 5.1).

Section 5.2.1 presents detailed comparisons between metadata-
based and metadata-free approaches and illustrates the efficiency
of the metadata-free design.

3.4 EC-Rate-Aware Task Scheduling
In the multi-rail mode, multiple underlying hardware will be carry-
ing out EC computations simultaneously. However, the capability

of a hardware device to perform EC operations is different to the
others, and the performance is not consistent for the same hard-
ware under variant situations and conditions. To maximally exploit
underlying hardware, we need to design a light-weight and effi-
cient (i.e., be able to achieve aggregated performance from multiple
devices as mentioned in Equation 5) task scheduler to balance work-
loads.

Since the task scheduler will work in the critical path, it should
be as light-weight as possible. Therefore, we compare the following
two design alternatives for task scheduling.

3.4.1 First Come, First Served (FCFS) Task Scheduling. Figure 4a
presents one implementation of FCFS task scheduling. In this ap-
proach, both onload and offload EC coders, are assigned to multiple
worker threads in the same thread pool. Since they are in the same
priority, the thread finishing one task can fetch another one di-
rectly from a global task queue, without any assistance from an
explicit task scheduler thread. This approach is straightforward,
but introduces possible contentions of retrieving tasks concurrently
amongmultiple EC coders, and fails to balance workloads to achieve
optimal performance.

3.4.2 EC-Rate-Aware Task Scheduling. We introduce an EC-rate-
aware task scheduler, as depicted in Figure 4b, to dispatch tasks
to different devices explicitly based on their current EC operation
rates. This design is based on the assumption that the current EC
operation rate can reflect the device EC capability as well as its
current workload status. In this design, worker threads are split
into thread groups based on the EC coders employed, such that
threads using the same EC coders are grouped together. The task
scheduler monitors the EC rates of different thread groups, and
assigns a balanced amount of tasks into thread groups according to
their normalized EC rates. The tasks assigned to the same thread
group are placed into a sub task queue which can be pulled by
the thread group exclusively. The advantages of the EC-rate-aware
approach are achieving the awareness of workload characteristics
and throughput of every EC coder, as well as being light-weight.

(a) FCFS Approach (b) EC-Rate-Aware Approach (Proposed)

Figure 4: Comparison of Scheduling Design Alternatives

To achieve higher efficiency, the thread pool for task scheduling
is designed to be lock-free by two techniques: 1) Designing a lock-
free task queue, which guarantees the expected order of multiple
tasks with less overhead compared to the with-lock counterpart,
and 2) Replacing mutex with spinlock + atomic, because the perfor-
mance penalty of the use of mutex is considerable, since the context
switching is really frequent and fast.

In Section 5.2.2, we will provide detailed comparisons between
these two approaches and explain why the EC-rate-aware design
can achieve higher aggregated throughput.

Cloud Systems HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

224

4 CO-DESIGN HDFS WITH UMR-EC
This section presents co-designed HDFS architecture with UMR-
EC.

4.1 Writes
The default EC write pipeline of HDFS 3.x, as depicted in Fig-
ure 5a, consists of three basic phases: 1 [Collecting] collects k
data chunks, 2 [Encoding] encodes on k data chunks to generate
m parity chunks, and, 3 [Streaming] sends all chunks to corre-
sponding DataNodes. This write pipeline coincides with Equation 1.
Thus, the optimization approaches discussed in Section 2.2 can
be applied to fully overlap between the three basic phases and to
leverage heterogeneous compute resources in parallel.

Motivated by Equation 7, we propose one non-blocking write
pipeline, as illustrated in Figure 5b, which achieves better perfor-
mance by overlapping [Encoding] phase with [Collecting] phase
and computation by utilizing asynchronous EC encoding provided
in UMR-EC. Changes made to enhance the default HDFS write
pipeline into a non-blocking pipeline, include: (1) replacing the
deployed EC coder with the ErasureCodingService, and, (2) using
UMR-EC’s asynchronous APIs with a window-based approach to
track outstanding encoding/decoding operations for completion.

To clarify the new non-blocking write pipeline, we introduce a
new phase 4 [Issuing] that issues encoding requests. As shown
in Figure 5b, after each [Collecting] phase, there is an [Issuing]
phase instead of [Encoding] phase. As demonstrated in the figure,
[Encoding] phase is able to overlap with [Collecting] phases
and computation occurring in the main thread. After n [Issuing]
phases, where n is a configurable window size, there will be a
synchronization barrier which forces the write pipeline to stop
and wait for all encodings to be completed. Finally, it performs
a [Streaming] phase to send all chunks to DataNodes after the
synchronization barrier.

With the non-blocking design, performing a huge [Streaming]
phase at each synchronization barrier can become a potential per-
formance bottleneck. To alleviate this problem and further im-
prove write performance, we propose a Functional Partitioning
(FP) [18] (similar to Staged Event-Driven Architecture (SEDA) [50])
based write pipeline, which is illustrated by Equation 9 and Fig-
ure 5c. Based on the functional partitioning principle, the entire
write pipeline can be partitioned into three disjoint functional
activities or stages, i.e., data preparing (i.e., [Collecting] phase),
EC operations (i.e., [Encoding] phase), and communication (i.e.,
[Streaming] phase). As depicted in Figure 5c, in addition to main
thread collecting data chunks and UMR-EC performing EC oper-
ations, there is one more dedicated communication thread pool
(denoted as Comm in the figure). Rather than returning gener-
ated parity chunks to the main thread, UMR-EC in FP-based write
pipeline will delegate the dedicated communication thread pool
to send the parity chunks to remote DataNodes. Thus it enables
better overlap among [Collecting] phases, [Encoding] phases,
[Streaming] phases, and computation occurring in themain thread.
To guarantee data consistency, the dedicated communication thread
conducts [Streaming] phases with the same order as main thread
posts requests.

4.2 Reads
The default HDFS 3.x read pipeline consists of two major phases:
1 [Fetching] phase that aggregates data and/or parity chunks4
from the remote DataNodes, and, 2 [Decoding] phase that recov-
ers any lost data. Figure 6a shows the default read pipeline of HDFS
3.x. In the default blocking read pipeline of HDFS, if any corrupted
chunks are detected in [Fetching] phase, then a [Decoding] phase
will follow directly after the [Fetching] phase. The latency model
is illustrated by Equation 2. Thus, it is obvious that the read perfor-
mance degrades significantly if data losses are frequent.

As already discussed in Section 2.2, chunk corruptions are not
supposed to happen very often. Suppose one corruption occurs
for every 100 reads, then for the 99 healthy reads, Tr_nb (D) =
max {0,Tcomm (D) +Tother } = Tcomm (D) +Tother = Tr (D). Such
that, the benefit obtained by optimizing the only read with EC de-
coding is amortized by 100 reads and thus becomes minor. Hence,
it is not profitable to incorporate this design into read pipeline
in a distributed storage systems. However, the read latency can
benefit from FP-based design approach, which is demonstrated by
Equation 9. To clarify the new FP-based read pipeline, we intro-
duce an additional phase, known as the 4 [Issuing] phase, that
issues either non-blocking fetching requests or decoding requests.
Our proposed FP-based design, implemented by exploiting the non-
blocking semantics proposed in UMR-EC, splits the entire read
pipeline into three functional components: 1) communication, 2)
decoding, and 3) computation. With the FP-based design, the main
thread focuses on computation jobs after issuing several fetching re-
quests. The dedicated communication thread pool is wherein actual
read operations happen. Once data corruptions occur, the communi-
cation thread pool will involve UMR-EC in recovering data chunks.
As clarified in Equation 9, the FP-based approach enables better
overlap among [Fetching], [Decoding], and computation occur-
ring in the main thread. In the FP-based pipeline, synchronization
is performed once after issuing n fetching operations, where n is
a configurable window size. As we can see from this analysis, the
read performance of the FP-based pipeline is better than the default
one no matter data corruptions happen or not.

4.3 Multi-Instance-Aware Coordination
In an HDFS cluster, a node may have multiple writers/readers si-
multaneously writing/reading multiple files. Since each writer and
reader will hold one UMR-EC instance to perform blocking or
non-blocking EC operations, UMR-EC should be able to eliminate
possible resource contentions among multiple UMR-EC instances
running on the same node.

To achieve this goal, we propose multi-instance-aware coordina-
tion schemes in UMR-EC. The basic idea is that, by using shared
memory, each UMR-EC instance can detect the existence of other
instances running on the same node. Thus, the total number of
running instances can be detected by all the UMR-EC instances on
the same node. We need this information for coordination because
we observe that the best number of threads to simultaneously per-
form EC operations on each device cannot be too high or too low.
Within UMR-EC library, we design an architecture-aware tuning
table mechanism to keep the pre-tuned best number of parallel
4The parity chunks will only be fetched if any data chunks corrupted.

Cloud Systems HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

225

Client DN	1 DN	2

Go	to
next	loop

Computation

Function	call
LEGEND

Function	return

Data	flow
Control	flow

Computation
EC	operation

Other

Task	completion

Dispatch	task	
to	a	worker
Go	to	next	loop

Collect	chunks

1

2
3

(a) Blocking Write Pipeline (Def)

Main UMR-EC

DN	1 DN	2

iencode

iencode
dispatch

Immediately
return	once	task
is	enqueued

C
om

pu
ta
tio
n

Go	to
next	loop

wait

Client

1

2

3

4

(b) Non-Blocking Write Pipeline (Proposed)

UMR-ECMain

DN	2DN	1

iencode

iencode

dispatch

Immediately
return	once	task
is	enqueued

C
om

pu
ta
tio
n

Wait	for	the
last	task	to	be
completed

Go	to
next	loop

iencode

wait

dispatch

Client

Comm

1

2

3

4

(c) FP-Based Write Pipeline (Proposed)

Figure 5: Default and Proposed Write Pipelines

Client DN	1 DN	2

Go	to
next	loop

C
om

pu
ta
tio
n

1

2

(a) Blocking Read Pipeline (Def)

UMR-ECCommMain

DN	2DN	1

Immediately
return	once	task
is	enqueued

C
om

pu
ta
tio
n

Go	to
next	loop

wait

Client

idecode

idecode

idecode

wait

dispatch

dispatch

1

2

4

4

(b) FP-Based Read Pipeline (Proposed)

Figure 6: Default and Proposed Read Pipelines

threads (i.e., best parallelism) for several modern CPUs, GPUs, and
IB HCAs. Note that the table can be extended by running our tuning
tools on a new hardware device, if it is missing in the table. If a
matched record cannot be found in the tuning table, UMR-EC will
choose the default numbers.

Once the UMR-EC library is loaded in HDFS, the proper num-
ber of EC operation threads will be calculated based on the best
parallelism of available devices on the node and the total number
of running instances. During runtime, all UMR-EC instances will
adjust their parallelisms periodically and automatically based on
the detected number of instances. With this multi-instance-aware
coordination, our design can dynamically and transparently offer
optimal performance for end applications.

5 EVALUATION
In this section, we conduct extensive evaluations, which are divided
into the following categories:
(1) Evaluations with raw coders and design alternatives, to study
the performance of the UMR-EC library
(2) Evaluations of ‘HDFS+UMR-EC’ co-designs with I/O intensive
workloads, comprehensive workloads, and failure recovery tests

5.1 Experimental Setup
Two real-world clusters (i.e., A and B) are used in this paper as
shown in Table 3. The version of Hadoop used in the evaluation
is 3.0.0 alpha2. We conduct all the experiments on RAMDisk to
minimize the performance influence from storage. Other necessary
drivers and libraries are CUDA 8.0, Mellanox OFED 4.2, Jerasure
2.0, ISA-L 2.18.0, Gibraltar 5, and Mellanox-EC 6. Note that Jerasure
in our experiments is compiled without SSE support, such that
Jerasure represents onload erasure coder with common instruction
sets while ISA-L represents onload coder with advanced instruction
sets.

Table 3: Specifications of Clusters

Specification Cluster A Cluster B

Processor
Intel Broadwell
E5 v2680

Intel Broadwell
E5-2697A v4

Frequency 2.4 GHZ 2.6 GHZ
GPU K80 × 2
RAM (DDR) 128 GB 256 GB

Interconnect
ConnectX-4
IB-EDR (100 Gbps)

ConnectX-5
IB-EDR (100 Gbps)

OS CentOS 7.2 Red Hat 7.2
JDK OpenJDK 1.8.0 OpenJDK 1.8.0
Scale 16 nodes 32 nodes
Policies CPU + GPU CPU + IB

Note that we are not able to perform multi-rail with CPU, GPU, and HCA
simultaneously, because 1) Cluster A has CPUs, GPUs, but not the latest
ConnectX-5 IB NICs, which are now the only NICs supporting EC offload
under GF (28), and 2) Cluster B has CPUs, the latest ConnectX-5 IB NICs,
but not GPUs.

5Github: https://github.com/jaredjennings/libgibraltar,
commit: c93f9d8c3be70ded173822cdca2e51900a3f5ed1
6Github: https://github.com/Mellanox/EC,
commit: 00bf091aa14322baf4425f8a6d5d134e91fe2a5c

Cloud Systems HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

226

https://github.com/jaredjennings/libgibraltar
https://github.com/Mellanox/EC

5.2 Raw Coder Benchmarks
In this section, we conduct benchmarks to compare design alterna-
tives and to evaluate the performance of single-rail and multi-rail
modes. The chunk size is fixed to 64KB, which is widely employed
in real-world storage systems [10, 30]. Term ISA is short for ISA-L
coder, Jer for Jerasure coder, Gib for Gibraltar coder, and Mx for
Mellanox-EC coder. Meanwhile, we use name concatenations of
utilized coders to represent multi-rail mode. For instance, term
Jer+Gib represents the multi-rail mode with Jerasure and Gibraltar
coders, etc.

5.2.1 Metadata-Free vs. Metadata-Based. As aforementioned
in Section 3.3, there exist two approaches (i.e., Metadata-based
approach and Metadata-free approach) to efficiently exploit hetero-
geneous hardware to perform EC operations. Figure 7 presents the
performance comparison of both approaches. For performing the
benchmarks of metadata-based approach, we implement a metadata
server with Memcached to store the metadata information. In the
benchmarks, we only deploy one metadata server and one client,
since this configuration is the best case for the metadata-based
approach as the metadata server will be a bottleneck if the number
of clients increases. As shown in Figure 7, the number of chunks
are varied from one until getting the peak throughout. Definitely,
the one-chunk case presents the worst performance scenario be-
cause of the significant communication overhead. Meanwhile, the
differences between 16-chunk and 32-chunk are trivial in all cases,
such that we do not have to show other cases. To summarize, Fig-
ure 7a illustrates that EC encoding operations with metadata-free
approach can be sped up by up to 4.2x and 1.3x compared to the
worst case and the best case of metadata-based approach, respec-
tively. Figure 7b shows that the speed-ups for decoding are up to
4.6x and 1.4x, respectively.

Metadata-Based (1) Metadata-Based (8) Metadata-Based (16)
Metadata-Based (32) Metadata-Free

0

20

40

60

ISA+Gib ISA+Mx Jer+Gib Jer+Mx
0

20

40

60

ISA+Gib ISA+Mx Jer+Gib Jer+Mx

Th
ro

ug
hp

ut
 (G

B
/s

ec
)

(a) Encode (b) Decode

Figure 7: Performance Comparison of Metadata-Free Ap-
proach and Metadata-Based Approach (Cluster A). In the leg-
ends, the number in parenthesis refers to the number of chunks in a chunk
group. All chunks in one chunk group share the same metadata.

5.2.2 EC-Rate-Aware Task Scheduling. To find out a proper ap-
proach maximizing the overlap of EC operations with computations
and communications, we evaluate two design alternatives, i.e., EC-
rate-aware task scheduling and First Come First Served (FCFS) task
scheduling. The design details of both approaches are in Section 3.4.
Figure 8 depicts the performance comparison of EC-rate-aware task
scheduling and FCFS task scheduling with one node. The leftmost
stacked bar in each bar group indicates the theoretical summation
of the peak throughputs of exploited coders. The EC-rate-aware

approach, which has a performance very close to the summation,
outperforms the FCFS approach by up to 17.5% and 17.3% for en-
coding and decoding, respectively. This indicates that our proposed
EC-rate-aware design is effective and sufficient enough to get the
peak aggregated throughput.

0

20

40

60

Su
m

R
at

e
FC

FS

Su
m

R
at

e
FC

FS

Su
m

R
at

e
FC

FS

Su
m

R
at

e
FC

FS

ISA+Gib ISA+Mx Jer+Gib Jer+Mx

ISA (31.2 GB/s)
Jer (17.4 GB/s)
Gib (11.5 GB/s)
Mx (8.5 GB/s)

0

20

40

60

Su
m

R
at

e
FC

FS

Su
m

R
at

e
FC

FS

Su
m

R
at

e
FC

FS

Su
m

R
at

e
FC

FS

ISA+Gib ISA+Mx Jer+Gib Jer+Mx

ISA (29.7 GB/s)
Jer (10.9 GB/s)
Gib (10.6 GB/s)
Mx (7.6 GB/s)

Th
ro

ug
hp

ut
 (G

B
/s

ec
)

(a) Encode (b) Decode

Figure 8: Performance Comparison of EC-Rate-Aware Task
Scheduling and FCFS Task Scheduling (Cluster A). In the leg-
ends, the number after each coder name indicates the peak throughput in
single-rail mode. Since the overhead introduced by the single-rail mode
is trivial, the peak throughputs can be considered as the best throughputs
which the coders can gain with well-tuned thread pool on our clusters.

To figure out the reason that slows down the performance of
FCFS, we conduct some profiling experiments to analyze the bottle-
necks. As highlighted by the red oval in Figure 9, the main factor is
the tail latency. The tail latency issue is also revealed by Equations 7
and 8. As all workers in the FCFS task scheduling have the same pri-
ority, a task can be fetched by slower coders as well as faster coders
with the same probability. However, faster coders could be 4x faster
than slower coders (e.g., ISA vs. Mx). If the last several tasks are
carried out by both faster coders and slower coders, the latency
is bounded on the latencies of slower coders. On the other hand,
the tasks in the EC-rate-aware approach are assigned according to
the EC-rates of involved coders, and faster coders in this approach
have a relatively higher priority than slower coders. Since the tasks
are well-balanced among coders, the tail latency observed in FCFS
approach is eliminated in EC-rate-aware one.

0%

20%

40%

60%

80%

100%

3.0 3.5 4.0 4.5 5.0 5.5

C
D

F

Latency (ms)

FCFS
EC-Rate-Aware

Figure 9: Cumulative Distribution Functions (CDFs) of EC-
Rate-Aware Task Scheduling and FCFS Task Scheduling. The
red oval highlights the tail latency of FCFS, which is the root cause of its
performance degradation.

5.3 HDFS Micro-benchmarks
In this section, we choose three benchmarks and conduct them
with the largest scale on each cluster: (1) I/O intensive workloads -

Cloud Systems HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

227

TestDFSIO Write benchmark, (2) Comprehensive workloads - Sort
benchmark, and (3) Failure recovery benchmark. Since the default
EC scheme in HDFS 3.0.0 alpha2 is RS(6, 3) with a chunk size of 64
KB, we choose four as the replication factor to conduct fair com-
parisons. Based on Table 1, the trends of performance comparisons
between EC and replication are kept for other replication factors.
To describe clearly, we introduce some terms: No-Overhead EC
refers to an ideal EC coder which has no computation overhead,
it is mimicked by doing nothing in encoding/decoding. 4-Rep is
short for 4-way replication. HDFS-RS refers to default EC coder (i.e.,
a Java-implemented Reed-Solomon coder) in HDFS 3.x. NoFailure
refers to read without failures. Def indicates default approaches
(e.g., 4-Rep, HDFS-RS) in HDFS 3.x. UMR-SR refers to UMR-EC
single-rail mode, and UMR-MR refers to UMR-EC multi-rail mode.

Blocking Non-Blocking FP-Based No-Overhead EC

(a) 80GB (Cluster A) (b) 160GB (Cluster A)

0

250

500

750

4-
Re

p
H

D
FS

-R
S

Je
ra

su
re

G
ib

ra
lta

r

IS
A

-L

Je
r+

G
ib

IS
A

+G
ib

0

250

500

750

4-
Re

p
H

D
FS

-R
S

Je
ra

su
re

G
ib

ra
lta

r

IS
A

-L

Je
r+

G
ib

IS
A

+G
ib

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Def UMR-SR UMR-MR Def UMR-SR UMR-MR

Figure 10: TestDFSIO Write on Cluster A (16 nodes).

Blocking Non-Blocking FP-Based No-Overhead EC

La
te

nc
y

(s
ec

)

(a) 160GB (Cluster B) (b) 320GB (Cluster B)

0
50

100
150
200
250

4-
Re

p
H

D
FS

-R
S

Je
ra

su
re

M
x-

EC

IS
A

-L

Je
r+

M
x

IS
A

+M
x

0
100
200
300
400
500

4-
Re

p
H

D
FS

-R
S

Je
ra

su
re

M
x-

EC

IS
A

-L

Je
r+

M
x

IS
A

+M
x

Def UMR-SR UMR-MR Def UMR-SR UMR-MR

Figure 11: Sort on Cluster B (32 nodes).

5.3.1 I/O Intensive Workloads - TestDFSIO Write. The TestDF-
SIO Write tests are run with 16 maps/reduces on Cluster A. The
results in Figure 10 demonstrate that the non-blocking approach
offered by the UMR-EC library can fill up the gaps between No-
Overhead EC and other EC coders by overlapping most of the
overhead introduced by encoding. With the non-blocking single-
rail and multi-rail APIs, the HDFS-UMR performs up to 3.7x and
2.4x faster than employing 4-Rep and HDFS-RS, respectively.

On the other hand, the most effective approach shown in the
figure is the FP-based design. By overlapping data preparing, EC
operations, and communication, the coders can achieve higher
performance than No-Overhead EC by up to 1.66x. Compared to
4-Rep and HFDS-RS, the FP-based design has up to 6.1x and 3.3x
improvements, respectively. In the meantime, the FP-based single-
rail and multi-rail designs improve HDFS-UMR by up to 51.8% and
66.0%, respectively, compared to HDFS employed with the best EC

coder on CPU, i.e., ISA-L. The results demonstrate that our FP-based
design with UMR-EC can achieve optimal overlapping.

5.3.2 Comprehensive Workloads - Sort. To study how extra com-
putations impact the performance of EC coders, we conduct a com-
prehensive benchmark (i.e., sort) to get extra computations involved
in. The performance comparison between Figure 11a and 11b im-
plies that the more workload the more benefit we can obtain from
employing UMR-EC. It is because the multi-rail approach, which
utilizes both onload and offload coders, reduces the performance
degradation of onload coder by schedulingmoreworkload to offload
coders once there are heavy loads on CPUs.

The results from Cluster B clearly depict the trend of latency
changes. As shown in Figure 11b, the FP-based multi-rail approach
can significantly reduce the overhead and benefit from offload
coders. It reduces latencies by up to 73.4% and 52.3% compared to
4-Rep and HDFS-RS, respectively. While compared with the best EC
coder on CPU (i.e., ISA-L) in HDFS, the performance improvements
achieved by exploiting FP-based single-rail and multi-rail are up to
21.9% and 45.5%, respectively.

5.3.3 Failure Recovery Evaluation. We conduct TestDFSIO read
with failures to study the performance issue of DataNode failures.
The recovery benchmark is conducted on Cluster A with 16 map-
s/reduces, and on Cluster B with 32 maps/reduces. As shown in
Figure 12, the throughput performance of EC coders decreases dra-
matically along with the increasing of DataNode failures. This is a
well-known issue of employing EC in modern distributed storage
systems. However, the HDFS-UMR solves this issue by re-designing
the read pipeline with the benefit of our UMR-EC library.

From the quantitative perspective, the FP-based multi-rail read
pipeline improves the read performance up to 2.4x, 2.3x, and 2.6x for
one DataNode failure, two DataNode failures, and three DataNode
failures, respectively, compared to 4-Rep. Meanwhile, if compared
with HDFS-RS, the improvements are up to 2.8x, 3.9x, and 5.1x for
one DataNode failure, two DataNode failures, and three DataNode
failures, respectively. In addition, the percentage improvements
obtained by FP-based multi-rail approach against the best onload
coder (i.e., ISA-L) are up to 17.9%, 13.8%, and 19.4% for one DataN-
ode failure, two DataNode failures, and three DataNode failures,
respectively. The numbers of two DataNode failures are not shown
in Figure 12 because of space limitation.

6 RELATEDWORK
Many studies in the community have been focusing on employing
EC as an alternative fault-tolerance technique to replication in
distributed storage systems.

Erasure Coding for Storage Systems Erasure codes have been
extensively adopted in designing storage systems [1–3, 9–11, 16,
17, 28, 30, 49], as they offer higher reliability than replication meth-
ods with much lower storage overheads [48]. Towards reducing
the recovery overhead in erasure codes, several studies introduce
local parities, such as Local Reconstruction Codes [12] and Locally
Repairable Codes [41]. In the meantime, some research works to
reduce the network bandwidth usage are proposed, such as Partial-
Parallel-Repair [27], Repair Pipelining [19], and [5, 11, 36, 37]. On
the other hand, EC schemes are also being employed to design

Cloud Systems HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

228

Blocking FP-Based NoFailure

0

800

1600

2400
4-

Re
p

H
D

FS
-R

S

Je
ra

su
re

G
ib

ra
lta

r

IS
A

-L

Je
r+

G
ib

IS
A

+G
ib

0

800

1600

2400

4-
Re

p
H

D
FS

-R
S

Je
ra

su
re

G
ib

ra
lta

r

IS
A

-L

Je
r+

G
ib

IS
A

+G
ib

0

1000

2000

3000

4-
Re

p
H

D
FS

-R
S

Je
ra

su
re

M
x-

EC

IS
A

-L

Je
r+

M
x

IS
A

+M
x

0

1000

2000

3000

4-
Re

p
H

D
FS

-R
S

Je
ra

su
re

M
x-

EC

IS
A

-L

Je
r+

M
x

IS
A

+M
x

(a) 1 Failure (Cluster A) (b) 3 Failures (Cluster A) (c) 1 Failure (Cluster B) (d) 3 Failures (Cluster B)

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Def UMR-SR UMR-MR Def UMR-SR UMR-MR Def UMR-SR UMR-MR Def UMR-SR UMR-MR

Figure 12: Recovery Evaluation with One and Three DataNode failures on Cluster A (16 nodes) and Cluster B (32 nodes).

resilient key-value store-based systems, including, Cocytus [52],
EC-Cache [35], RDMA-Memcached with Online EC support [43],
Hybris [6], and BCStore [20]. Recently, substantial research efforts,
such as RS-based Hitchhiker [38], Locally Repairable Codes based
design of HDFS-Xorbas [42], hybrid designs such as HACFS [51],
and Facebook HDFS-RAID [41] have been proposed for designing
large-scale Hadoop clusters, with focus on reducing network, disk
and recovery overheads. This increased focus on EC for storage
resilience serves as a motivation for this paper.

Multi-Rail Technologies The multi-rail concept has been widely
used in designing high-performance communication runtimes and
systems. Multi-rail MPI [21] and Multi-path RDMA [22, 26] are
leveraging multi-rail designs to accelerate communication. On the
other hand, prior studies such as [45, 47] demonstrate that utilizing
multiple devices simultaneously is able to deliver faster computa-
tion performance. Our early study [44] sheds substantial light on
multi-rail EC.

Hardware Acceleration and Optimizations for Erasure Cod-
ing Generic EC libraries such as Jerasure [33, 34], that support
a wide variety of erasure codes, including Reed-Solomon [39],
Cauchy-Reed-Solomon [31], etc., are widely being used today. How-
ever recent advancements in CPU architectures are enabling the
design of advanced support for high-speed computations for EC
[14, 23, 32], by taking advantage of instructions sets such as SSE,
AVX, and AVX2. Along similar lines, to reduce CPU consumption
and leverage the capabilities of high-performance network adapters,
Mellanox ConnectX-4 (and later) adapters are enabling EC calcula-
tions to be offloaded to the HCA [25].

Initial work has been done to integrate the Intel ISA-L and Mel-
lanox Offload coders into HDFS 3.x [24]. In addition to this, EC
API libraries such as OpenStack’s liberasurecode [29] also attempt
to unify different EC libraries. However, they do not provide any
support for asynchronous EC encode/decode semantics or a way to
employ multiple EC-Onload and EC-Offload coders in parallel. In
contrast, in this paper, we identify and overcome the bottlenecks
and the limitations of these existing approaches. Based on our anal-
ysis, we introduce a unified high-performance and non-blocking
UMR-EC library that can exploit the heterogeneous EC compute
capabilities of various coders and hardware devices concurrently,
to enable high-throughput I/O and storage-efficient resilience for
distributed storage systems such as HDFS.

7 CONCLUSION
In this paper, we first introduce a performance model to analyze
the design scope of efficient EC schemes in distributed storage sys-
tems. Guided by the performance model, we propose UMR-EC, a
Unified and Multi-Rail Erasure Coding library that provides I/O-
intensive applications with a unified way to exploit heterogeneous
EC coders on modern data center and cloud environments. We de-
sign UMR-EC based on three main building blocks: (1) the support
of multi-rail EC to exploit heterogeneous EC capabilities of modern
data centers concurrently, (2) the uniform and asynchronous inter-
faces to abstract EC functionalities required for high-performance
distributed storage systems, and, (3) the high-performance UMR-EC
runtime, which enables metadata free scheme and EC rate-aware
task scheduling for performing EC operations.

Through in-depth performance evaluations, we demonstrate that
HDFS-UMR can outperform the write performance of replication
schemes and the default HDFS EC coder by 3.7x - 6.1x and 2.4x -
3.3x, respectively, and can improve the performance of read with
failure recoveries up to 5.1x compared with the default HDFS EC
coder. Compared with the fastest CPU coder (i.e., ISA-L), HDFS-
UMR has an improvement of up to 66.0% and 19.4% for write and
read with failure recoveries, respectively. In the future, we plan to
support other EC schemes such as FPGA-based coders and non-RS
coders in UMR-EC.

REFERENCES
[1] Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,

John R Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer, and Roger P Wat-
tenhofer. 2002. FARSITE: Federated, Available, and Reliable Storage for an In-
completely Trusted Environment. ACM SIGOPS Operating Systems Review 36, SI
(2002), 1–14.

[2] Ceph. 2016. Ceph Erasure Coding. http://docs.ceph.com/docs/master/rados/
operations/erasure-code/.

[3] Yu Lin Chen, Shuai Mu, Jinyang Li, Cheng Huang, Jin Li, Aaron Ogus, and
Douglas Phillips. 2017. Giza: Erasure Coding Objects across Global Data Centers.
In Proc. USENIX Annu. Tech. Conf.(USENIX ATC).

[4] Matthew Curry, Anthony Skjellum, H LeeWard, and Ron Brightwell. 2011. Gibral-
tar: A Reed-Solomon Coding Library for Storage Applications on Programmable
Graphics Processors. In Concurrency and Computation: Practice and Experience,
Vol. 23. 2477–2495.

[5] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J Wainwright,
and Kannan Ramchandran. 2010. Network Coding for Distributed Storage Sys-
tems. IEEE transactions on information theory 56, 9 (2010), 4539–4551.

[6] Dan Dobre, Paolo Viotti, and Marko Vukolić. 2014. Hybris: Robust Hybrid Cloud
Storage. In Proceedings of the ACM Symposium on Cloud Computing. ACM, 1–14.

[7] Facebook. 2010. Facebook’s Erasure Coded Hadoop Distributed File System
(HDFS-RAID). https://github.com/facebookarchive/hadoop-20.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google File
System. In ACM SIGOPS operating systems review, Vol. 37. ACM, 29–43.

Cloud Systems HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

229

http://docs.ceph.com/docs/ master/rados/operations/erasure-code/
http://docs.ceph.com/docs/ master/rados/operations/erasure-code/
https://github.com/facebookarchive/hadoop-20

[9] Google. 2012. Colossus: Successor to the Google File System (GFS). https:
//www.systutorials.com/3202/colossus-successor-to-google-file-system-gfs/.

[10] Apache Hadoop. 2017. Apache Hadoop 3.0.0-alpha2. http://hadoop.apache.org/
docs/r3.0.0-alpha2/.

[11] Yuchong Hu, Henry CH Chen, Patrick PC Lee, and Yang Tang. 2012. NCCloud:
Applying Network Coding for the Storage Repair in a Cloud-of-Clouds.. In FAST.
21.

[12] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, Sergey Yekhanin, et al. 2012. Erasure Coding in Windows Azure
Storage. In Usenix Annual Technical Conference. Boston, MA, 15–26.

[13] Intel. 2011. Introduction to Intel® Advanced Vector Extensions. https://software.
intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions.

[14] Intel. 2016. Intel Intelligent Storage Acceleration Library (Intel ISA-L). https:
//software.intel.com/en-us/storage/ISA-L.

[15] Intel. 2016. Using Intel® Streaming SIMD Extensions and Intel® Integrated
Performance Primitives to Accelerate Algorithms. https://software.intel.com/
en-us/articles/.

[16] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, HakimWeatherspoon, Westley
Weimer, et al. 2000. Oceanstore: An Architecture for Global-Scale Persistent
Storage. In ACM SIGARCH Computer Architecture News, Vol. 28. ACM, 190–201.

[17] Chunbo Lai, Song Jiang, Liqiong Yang, Shiding Lin, Guangyu Sun, Zhenyu Hou,
Can Cui, and Jason Cong. 2015. Atlas: Baidu’s Key-value Storage System for Cloud
Data. In Mass Storage Systems and Technologies (MSST), 2015 31st Symposium on.
IEEE, 1–14.

[18] Min Li, Sudharshan S Vazhkudai, Ali R Butt, Fei Meng, Xiaosong Ma, Youngjae
Kim, Christian Engelmann, and Galen Shipman. 2010. Functional Partitioning
to Optimize End-to-End Performance on Many-core Architectures. In High Per-
formance Computing, Networking, Storage and Analysis (SC), 2010 International
Conference for. IEEE, 1–12.

[19] Runhui Li, Xiaolu Li, Patrick PC Lee, and Qun Huang. 2017. Repair Pipelining
for Erasure-coded Storage. In Proceedings of the 2017 USENIX Annual Technical
Conference (USENIX ATC’17). 567–579.

[20] Shenglong Li, Quanlu Zhang, Zhi Yang, and Yafei Dai. 2017. BCStore: Bandwidth-
Efficient In-memory KV-store with Batch Coding. In Proc. of IEEE MSST.

[21] Jiuxing Liu, Abhinav Vishnu, and Dhabaleswar K Panda. 2004. Building Multirail
InfiniBand Clusters: MPI-Level Design and Performance Evaluation. In SC’04:
Proceedings of the 2004 ACM/IEEE conference on Supercomputing. IEEE, 33–33.

[22] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng Cheng, Jian-
song Zhang, Enhong Chen, and Thomas Moscibroda. 2018. Multi-Path Transport
for RDMA in Datacenters. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). 357–371.

[23] Aleksei Marov and Andrey Fedorov. 2016. Optimization of RAID Erasure Coding
Algorithms for Intel Xeon Phi. In Networking, Architecture and Storage (NAS),
2016 IEEE International Conference on. IEEE, 1–4.

[24] Mellanox. 2016. HDFS Erasure Coding Offload Plugin. https://github.com/
Mellanox/EC/tree/master/HDFS.

[25] Mellanox. 2016. Understanding Erasure Coding Offload. https://community.
mellanox.com/docs/DOC-2414.

[26] Mellanox. 2018. Multi-Path RDMA. https://www.openfabrics.org/downloads/
Media/Monterey_2015/Tuesday/tuesday_04.pdf.

[27] Subrata Mitra, Rajesh Panta, Moo-Ryong Ra, and Saurabh Bagchi. 2016. Partial-
Parallel-Repair (PPR): A Distributed Technique for Repairing Erasure Coded
Storage. In Proceedings of the Eleventh European Conference on Computer Systems.
ACM, 30.

[28] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin,
Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang,
et al. 2014. f4: Facebook’s Warm BLOB Storage System. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation. USENIX
Association, 383–398.

[29] OpenStack. 2014. liberasurecode. https://github.com/openstack/liberasurecode.
[30] Michael Ovsiannikov, Silvius Rus, Damian Reeves, Paul Sutter, Sriram Rao, and

Jim Kelly. 2013. The Quantcast File System. Proceedings of the VLDB Endowment
11 (2013), 1092–1101.

[31] James S Plank. 2005. Optimizing Cauchy Reed-Solomon Codes for Fault-tolerant
Storage Applications. University of Tennessee, Tech. Rep. CS-05-569 (2005).

[32] James S. Plank, Kevin M. Greenan, and Ethan L. Miller. 2013. Screaming Fast
Galois Field Arithmetic Using Intel SIMD Instructions. In 11th USENIX Conference
on File and Storage Technologies (FAST 13). USENIX Association, San Jose, CA,
298–306.

[33] James S Plank, Jianqiang Luo, Catherine D Schuman, Lihao Xu, Zooko Wilcox-
O’Hearn, et al. 2009. A Performance Evaluation and Examination of Open-Source
Erasure Coding Libraries for Storage. In Proccedings of the 7th Conference on File
and Storage Technologies (FAST ’09). USENIX Association, Berkeley, CA, USA,
253–265. http://dl.acm.org/citation.cfm?id=1525908.1525927

[34] James S Plank, Scott Simmerman, and Catherine D Schuman. 2008. Jerasure: A
Library in C/C++ Facilitating Erasure Coding for Storage Applications. (2008).

[35] KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and Kannan Ram-
chandran. 2016. EC-Cache: Load-Balanced, Low-Latency Cluster Caching with
Online Erasure Coding. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16). USENIX Association.

[36] KV Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B Shah, and Kannan Ram-
chandran. 2015. Having Your Cake and Eating It Too: Jointly Optimal Erasure
Codes for I/O, Storage, and Network-bandwidth.. In FAST. 81–94.

[37] KV Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and
Kannan Ramchandran. 2013. A Solution to the Network Challenges of Data
Recovery in Erasure-coded Distributed Storage Systems: A Study on the Facebook
Warehouse Cluster.. In HotStorage.

[38] K.V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and
Kannan Ramchandran. 2014. A "Hitchhiker’s" Guide to Fast and Efficient Data
Reconstruction in Erasure-coded Data Centers. Proceedings of the 2014 ACM
Conference on SIGCOMM 44, 4 (Aug. 2014), 331–342.

[39] Irving S Reed and Gustave Solomon. 1960. Polynomial Codes Over Certain Finite
Fields. J. Soc. Indust. Appl. Math. 8, 2 (1960), 300–304.

[40] Rodrigo Rodrigues and Barbara Liskov. 2005. High Availability in DHTs: Era-
sure Coding vs. Replication. In International Workshop on Peer-to-Peer Systems.
Springer, 226–239.

[41] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos,
Alexandros G. Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur.
2013. XORing Elephants: Novel Erasure Codes for Big Data. Proceedings of the
VLDB Endowment 6, 5 (March 2013), 325–336.

[42] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos,
Alexandros G. Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur.
2013. XORing Elephants: Novel Erasure Codes for Big Data. Proceedings of the
VLDB Endowment 6, 5 (March 2013), 325–336.

[43] Dipti Shankar, Xiaoyi Lu, and D. K. Panda. 2017. High-Performance and Resilient
Key-Value Store with Online Erasure Coding for Big Data Workloads. In Proceed-
ings of the 37th IEEE International Conference on Distributed Computing Systems
(ICDCS).

[44] Haiyang Shi, Xiaoyi Lu, Dipti Shankar, and Dhabaleswar K Panda. 2018. High-
Performance Multi-Rail Erasure Coding Library over Modern Data Center Ar-
chitectures: Early Experiences. In Proceedings of the ACM Symposium on Cloud
Computing. ACM, 530–531.

[45] Rong Shi, Sreeram Potluri, Khaled Hamidouche, Xiaoyi Lu, Karen Tomko, and
Dhabaleswar K Panda. 2013. A Scalable and Portable Approach to Accelerate
Hybrid HPL on Heterogeneous CPU-GPU Clusters. In 2013 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 1–8.

[46] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop Distributed File System. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 1–10.

[47] Fengguang Song, Stanimire Tomov, and Jack Dongarra. 2012. Enabling and Scal-
ing Matrix Computations on Heterogeneous Multi-core and Multi-GPU Systems.
In Proceedings of the 26th ACM international conference on Supercomputing. ACM,
365–376.

[48] Hakim Weatherspoon and John D Kubiatowicz. 2002. Erasure Coding vs. Repli-
cation: A Quantitative Comparison. In International Workshop on Peer-to-Peer
Systems. Springer, 328–337.

[49] Sage AWeil, Scott A Brandt, Ethan LMiller, Darrell DE Long, and CarlosMaltzahn.
2006. Ceph: A Scalable, High-Performance Distributed File System. In Proceedings
of the 7th symposium on Operating systems design and implementation. USENIX
Association, 307–320.

[50] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services. In ACM SIGOPS Operating Systems
Review, Vol. 35. ACM, 230–243.

[51] Mingyuan Xia, Mohit Saxena, Mario Blaum, and David A. Pease. 2015. A Tale
of Two Erasure Codes in HDFS. In 13th USENIX Conference on File and Storage
Technologies (FAST 15). USENIX Association, Santa Clara, CA, 213–226. https:
//www.usenix.org/conference/fast15/technical-sessions/presentation/xia

[52] Heng Zhang, Mingkai Dong, and Haibo Chen. 2016. Efficient and Available In-
memory KV-Store with Hybrid Erasure Coding and Replication. In 14th USENIX
Conference on File and Storage Technologies (FAST 16). USENIX Association, Santa
Clara, CA, 167–180.

Cloud Systems HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

230

https://www.systutorials.com/3202/colossus-successor-to-google-file-system-gfs/
https://www.systutorials.com/3202/colossus-successor-to-google-file-system-gfs/
http://hadoop.apache.org/docs/r3.0.0-alpha2/
http://hadoop.apache.org/docs/r3.0.0-alpha2/
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/storage/ISA-L
https://software.intel.com/en-us/storage/ISA-L
https://software.intel.com/en-us/articles/
https://software.intel.com/en-us/articles/
https://github.com/Mellanox/EC/tree/master/HDFS
https://github.com/Mellanox/EC/tree/master/HDFS
https://community.mellanox.com/docs/DOC-2414
https://community.mellanox.com/docs/DOC-2414
https://www.openfabrics.org/downloads/Media/Monterey_2015/Tuesday/tuesday_04.pdf
https://www.openfabrics.org/downloads/Media/Monterey_2015/Tuesday/tuesday_04.pdf
https://github.com/openstack/liberasurecode
http://dl.acm.org/citation.cfm?id=1525908.1525927
https://www.usenix.org/conference/fast15/technical-sessions/presentation/xia
https://www.usenix.org/conference/fast15/technical-sessions/presentation/xia

	Abstract
	1 Introduction
	2 Modeling and Guidance
	2.1 Performance Models of Write and Read
	2.2 Challenges and Opportunities

	3 UMR-EC Design
	3.1 Programming Model
	3.2 Runtime Architecture
	3.3 Metadata-Free Multi-Rail EC
	3.4 EC-Rate-Aware Task Scheduling

	4 Co-Design HDFS with UMR-EC
	4.1 Writes
	4.2 Reads
	4.3 Multi-Instance-Aware Coordination

	5 Evaluation
	5.1 Experimental Setup
	5.2 Raw Coder Benchmarks
	5.3 HDFS Micro-benchmarks

	6 Related Work
	7 Conclusion
	References

