
Accelerating Cloud-Native Databases with
Distributed PMem Stores

Jason Sun1, Haoxiang Ma, Li Zhang, Huicong Liu, *Haiyang Shi, *Shangyu Luo, *Kai Wu2, Kevin Bruhwiler3,
Cheng Zhu, Yuanyuan Nie, *Jianjun Chen, Lei Zhang, Yuming Liang

*ByteDance US Infrastructure System Lab; ByteDance Inc.

Abstract—Relational databases have gone through a phase
of architectural transition from a monolithic to a distributed
architecture to take full advantage of cloud technology. These
distributed databases can leverage remote storage to maintain
larger amounts of data than monolithic databases at the cost
of increased latency. At ByteDance, we have built a distributed
database called veDB based on the popular compute-storage
separation architecture, however we have observed the system is
unable to provide both low latency and high throughput required
by some business critical applications, such as batched order
processing.

In this paper we present our novel approaches to tackle
this problem. We have modified our system’s storage to utilize
persistent memory (PMem) coupled with a remote direct mem-
ory access (RDMA) network to reduce read/write latency and
increase the throughput. We also propose a query push-down
framework to push partial computations to the PMem storage
layer to accelerate analytical queries and reduce the impact of the
transaction workload in the computation layer. Our experiments
show that our methods improve the throughput by up to 1.5×
and reduce latency by up to 20× for standard benchmarks and
real-world applications.

Index Terms—distributed database, cloud-native database,
PMem, RDMA, cloud computing, query push-down

I. INTRODUCTION

ByteDance uses RDBMS (e.g., MySQL) internally for storing
and querying data for various business applications, such
as managing user account information, processing purchase
orders, and tracking shipping and logistics. These applications
can be divided roughly into two categories: applications that
manage the display and content of the business—which are
very read-heavy and write-light, and applications that keep
track of user actions and business transactions—which are
write-heavy. In recent years, the volume of data produced
by those applications has grown so quickly that it is more
and more difficult for MySQL databases to handle it properly.
Therefore, we built our scalable cloud-native database, Vol-
cano Engine Database (veDB) [1], and migrated 30% of our
existing MySQL deployment to it.

The transition to veDB alleviated the concern of storage
capacity as veDB uses distributed storage. However, it brought

1. Jason Sun is the corresponding author, jason.sun@bytedance.com
2. Kai Wu is now with Microsoft Corporation, wukai@microsoft.com
3. Kevin Bruhwiler is currently a Ph.D student at University of Califor-

nia at Irvine. Work was done while he did an internship at ByteDance.
kevin.bruhwiler@gmail.com

up other issues: a high transaction latency fluctuation due to
network I/O and a high query latency when scanning large
amounts of data. As veDB separates computing and storage,
those latency issues are conspicuous. There are two reasons
for this:

1) veDB has a high log write latency due to its remote
data access. Its I/O path requires the participation of a
remote binary large object (blob) store, which introduces
latency from thread scheduling and contention.

2) veDB takes longer to read pages from the remote storage
compared to MySQL’s page reading from local disks.
This results in a long processing time for large data read
requests.

Such read/write latency issues are common for cloud-
native and compute-storage disaggregated systems [2], and
resolving them is challenging. Many works have studied how
to mitigate this problem [3]–[7]. However, most of them focus
on reducing read latency and do not pay much attention to
write latency. Using SSD-based storage would alleviate latency
issues of data read [8], but it is still unable to meet our
applications’ requirements for fast data write. To improve both
read and write performance we explored two key technologies:
persistent memory (PMem) [9] and remote direct memory
access (RDMA). PMem brings lower latency for both reads
and writes compared to SSD devices [10], and RDMA allows
accessing remote PMem directly without involving remote
processors. In addition, the kernel-bypass provided by RDMA
can reduce the kernel overheads such as scheduling overheads
and contention issues.

In this paper, we describe how to use a distributed PMem
store coupled with RDMA, called AStore, to improve the
performance of a cloud-native database and leverage query
push-down to AStore for fast analytical query execution. We
have the following key contributions:

1) We build a low latency PMem storage engine and em-
ploy one-sided RDMA to provide efficient access to it.
Our design can ensure read-write consistency while data
is concurrently accessed by one-sided RDMA verbs.

2) Our RDMA-accelerated AStore can reduce log write and
transaction latency, increase transaction throughput, and
maintain latency fluctuation within a narrow range.

3) Our RDMA-accelerated AStore is also used to create an



extended buffer pool (EBP). The extended buffer pool
can cache hot pages and reduce page read time, which
is especially useful when reading large amounts of data.

4) We propose a query push-down framework that can
leverage the RDMA-accelerated AStore to conduct par-
tial computations in both the extended buffer pool and
storage to reduce the overall query latency.

5) We conduct a set of experiments to show our design’s
effectiveness on both standard benchmarks and our inter-
nal workloads. The experiments on our real workloads
proved that our design could reduce our system’s latency
by up to 20× and is applicable to different products.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work. Section III gives an overview
of veDB’s architecture. Section IV describes our design of
RDMA-accelerated AStore. Section V presents how AStore
and RDMA reduce write and read latency and increase the
throughput. Section VI provides our design of a query push-
down framework. Section VII presents an experimental eval-
uation of our design. Finally, Section VIII summarizes the
paper.

II. RELATED WORK

A. Cloud Database Systems

Relational databases are an essential building block in
modern information technology infrastructure, and cloud ven-
dors have invested significant efforts to grow their relational
database service (RDS) business. Some examples are Amazon
Aurora [11], Microsoft Socrates [12], and Huawei Taurus [13].
These systems use an architecture based on the log-is-database
principle and offload REDO processing to a fault-tolerant,
self-healing, and multi-tenant scale-out storage service. They
also eliminate the need for checkpoints in the compute layer.
veDB shares many features with those databases, including
an append-only log-is-database architecture, separated com-
pute and storage layers, and replicated remote storage. veDB
also proposes its own design for some components, such as
replication protocol and page reconstruction from REDO logs.

Computation push-down is a common technique to mitigate
network bottlenecks in database systems with disaggregated
storage [11], [14] and systems that support federation [15]–
[17]. Amazon Aurora [11] offers a feature called parallel
query, which takes advantage of Aurora’s unique architecture
to push down and parallelize query processing across thou-
sands of CPUs in the the storage layer. Microsoft Polybase
[15] translates SQL operators on HDFS-resident data into
MapReduce jobs and then executes them on the Hadoop
cluster. The feature has been supported in SQL Server since
2016. PushdownDB [18] studied the effectiveness of pushing
parts of DBMS analytics queries into the Simple Storage Ser-
vice (S3) engine of Amazon Web Services (AWS). FlexPush-
downDB (FPDB) [19] is an OLAP cloud DBMS prototype that
supports fine-grained hybrid query execution to combine the
benefits of caching and computation push-down in a storage-
disaggregation architecture. veDB has a fine-grained hybrid

query execution guided by a similar design principle as FPDB
yet supports the capability of push-down query that is similar
to Aurora’s parallel query. Compared with FPDB and Aurora,
veDB leverages the computing power of AStore servers and
the data pages resided on PMem – instead of those in the
persistent storage layer – to support in-memory processing
and thus deliver high performance.

B. Hardware-Accelerated Database Systems

Non-Volatile Memory. Recent years have seen a proliferation
of studies on the use of non-volatile memory techniques. [20]–
[23], [23]–[34] propose hybrid storage architectures to balance
performance and cost. [35]–[37] introduce new transaction
schemes for managing transactional updates to data structures
designed for PMem. Additionally, there has been research on
persistent NVM indexes, such as B+-Trees [38]–[40], hash
tables [41]–[44], range indexes [45], learned indexes [46],
and high-performance join algorithms [47]. These studies are
complementary to the design of veDB, and the system can
also adopt PMem-optimized transaction schemes or indexes
to enhance performance. In this paper, we focus on building
efficient and effective disaggregated PMem stores to accelerate
a cloud-native database system.

The database community has been evaluating the use of Op-
tane PMem in database workloads as it becomes available. Wu
et al. [48] have run TPC-H and TPC-C benchmarks on an SQL
Server utilizing PMem and have demonstrated the benefits of
PMem. Benson et al. [49], [50] have also explored the best
practices for using PMem in OLAP workloads and examined
if PMem can replace NVMe SSDs. Similarly, Shanbhag et
al. [51] have evaluated OLAP workloads using Optane PMem
in AppDirect mode. Koutsoukos et al. [20] have conducted a
comprehensive analysis of existing relational database engines,
such as MySQL and Postgres, under different PMem config-
urations. Their evaluation results have suggested that placing
data in PMem increases performance in TPC-C due to the
lower latency and higher bandwidth of PMem when compared
with SSD/HDD. While these evaluations and characterizations
have shed light on the design of veDB, this work aims
to propose a practical, end-to-end industry database system
solution built with disaggregated PMem stores.
Remote Direct Memory Access (RDMA). The advance-
ments in high-performance networks utilizing RDMA have
opened up new possibilities for modern distributed database
systems [35], [52]–[54]. Microsoft has made many contri-
butions to this area, including the development of a main
memory distributed computing platform named FaRM [55].
This platform utilizes one-sided RDMA to improve its opti-
mistic concurrency control protocol and allows upper layers
to take advantage of its disaggregated memory model. This
has made FaRM a key innovation enabler and a building
block for high performance computing platform. For example,
subsequent studies [56], [57] have shown how FaRM can
be used to enable high-performance transactions. A1 [58]
illustrates a distributed in-memory graph database built on
top of FaRM. Other works in the field include FaSST [59], a

2



scalable distributed in-memory transaction processing system
built on top of an all-to-all RPC system that uses RDMA’s
datagram transport for CPU efficiency. DrTM+H [60] utilizes
RDMA to design efficient transaction execution and logging.
Storm [61] proposes an RDMA-accelerated transactional data
plane. Additionally, RDMA is widely used to accelerate dis-
tributed join processing [62]–[64] and data shuffling [65]–[69].
In comparison, veDB focuses on designing a distributed PMem
storage engine that fully leverages one-sided RDMA primitives
to deliver high-performance logging and page caching while
preserving PMem’s persistency to support fast recovery.

Recent years have witnessed a runaway rise in using RDMA
and PMem. This trend has prompted several well-known
database vendors to design their next-generation database sys-
tems or to re-design their existing systems. SAP HANA [22],
[70] has attempted an early adoption of persistent memory,
moving its columnar store to PMem and keeping only hot data
in DRAM, allowing for a fast restart and recovery. Unlike SAP
HANA, which couples PMem storage with database engines,
our work adopts a disaggregated architecture that decouples
PMem storage from database engines for better scalability.

IBM’s DB2 pureScale [71] adopts cluster-scale distributed
caching facilities to achieve high resource utilization and
elasticity, as well as centralized global locking and page cache
management for high levels of availability and scalability. The
centralized global locking mechanism leverages RDMA Atom-
ics to minimize the involvement of remote processors, while
the get, put, and invalidation operations towards the global
page cache are carried out by one-sided RDMA primitives to
deliver outstanding performance.

Microsoft SQL Server [72] makes use of RDMA to lever-
age available cluster-wise remote memory to improve query
performance. It has been shown that using remote memory,
as opposed to local disks, can improve the latency of various
TPC-H and TPC-DS queries by 2-100 times.

PolarDB [14] is a cloud database that uses a computation
and storage separation architecture. To address the challenge
of transferring large amounts of data for analytical queries,
PolarDB deploys computational storage drives in the Alibaba
Cloud to accelerate analytical workloads. By pushing down
data-intensive tasks from front-end database nodes to back-
end computational storage, it leverages the in-storage com-
puting power to perform table scans much more efficiently.
Furthermore, Alibaba proposed a serverless version called
PolarDB Serverless [73], which adopts a disaggregated archi-
tecture for its page cache and leverages RDMA to mitigate
the performance penalties caused by one extra network hop
along the critical data paths between compute servers and the
disaggregated memory pool.

Oracle Exadata [31], [74] is a popular industrial production
system that adopts PMem in a storage and computing separa-
tion architecture. The storage servers in Exadata are equipped
with multiple tiers of memory devices (e.g., PMem, flash,
and SSD) and are interconnected to the database servers via
RDMA-capable networks. The system’s internal replacement
policy intelligently caches hot blocks in the PMem cache layer

DBEngine

DB Kernel
Buffer Pool

Storage SDK

PageStore SDK

Page Engine

Blob Manager

Log Engine

……

PageStore

SSD SSD SSD

LogStore

SSD SSD SSD

Log Shipping Read page (Kernel Buffer Pool miss)Read & Write log

ASync

Fig. 1. The architecture of veDB.

to improve data block read speeds. It also buffers database
transaction log writes in PMem layer to reduce commit time.
Data blocks and REDO log records are transmitted by one-
sided RDMA primitives to avoid IO cliff.

Unlike pureScale and PolarDB, veDB’s Extend Buffer Pool
(EBP), which offers page cache management as well, is backed
with disaggregated PMem stores that are interconnected via
RDMA. This provides faster recovery and higher availabil-
ity by leveraging PMem’s persistency capability. In contrast
to SQL Server and Exadata, veDB’s disaggregated EBP is
separated from the PageStore and can be scaled horizontally.
Additionally, veDB’s DBEngine is able to push down queries
onto EBP components to make use of the CPU resources saved
by utilizing one-sided RDMA verbs.

III. BACKGROUND

In this section, we provide a short architectural overview of
veDB, ByteDance’s internal RDBMS. As shown in Figure 1,
veDB is based on an architecture that separates computing
and storage, following the log-is-database principle [75]. The
DBEngine is the computing component of veDB. It processes
transactions and performs computations for queries. Each
transaction generates a REDO log that records the modification
to the database. The REDO log is organized as a consecutive
stream, and the offset in the log stream is called the Log
Sequence Number (LSN). Therefore, LSN can indicate the
order of REDO logs. The storage layer of veDB consists
of LogStore and PageStore. LogStore receives the REDO
log from DBEngine, and persists it to disk. PageStore stores
versions of the data pages and continuously applies REDOs to
construct the latest version of the data pages. Both stores are
built on top of distributed storage and have a similar archi-
tecture to provide high availability and persistence. LogStore
uses an append-only distributed blob storage, and PageStore
provides random read capability at page granularity.

DBEngine is veDB’s computing layer. It is responsible for
query processing, data modification, and transaction manage-
ment. It reads from and writes REDO logs to the storage
layer and manages the buffer pool. Other operations, such as
checkpointing, are offloaded to the storage layer. DBEngine
communicates with the storage layer through embedded stor-
age SDK, which provides simple APIs that encapsulate the

3



details of managing a remotely distributed storage system. We
will discuss its details in the next section. After the REDO
log is written to the LogStore, the thread of the LogStore will
flush it to disk and notify the transaction processing thread in
DBEngine through a callback function.

LogStore is a crucial part of veDB’s storage layer and is
responsible for persisting REDO logs. veDB uses the ARIES
[76] method to handle transaction persistency and recovery.
The persistence of REDO records uses write-ahead logging
(WAL) and it guarantees the durability of transactions when
a crash happens. Each REDO log record is assigned a unique
LSN by LogStore based on their persistence order.

LogStore is built over an append-only blob storage system,
ensuring data durability, high availability, and fault tolerance.
In LogStore, each log record is persisted and replicated to
three or six replicas (according to the configuration) before
acknowledging DBEngine.

The storage SDK must be able to manage a large number
of REDO logs and process incoming write requests simulta-
neously with low latency. It appends REDO logs using a data
structure called BlobGroup. BlobGroup is a logical container
that is composed of multiple append-only blobs. By default,
each BlobGroup contains four blobs and provides 40GB
of storage space. I/O operations on blobs within the same
BlobGroup occur concurrently. Each I/O request is executed
physically in a fixed size (8KB by default).

Logically, all log append requests against the same Blob-
Group are merged into a single, longer-length request. This
request is then divided into multiple smaller I/O requests at
fixed sizes. Then, these fixed-size requests are assigned to
different blobs within the BlobGroup in a round-robin fashion
for execution. This model allows log append requests of a
large I/O size to be divided into smaller requests, executed
in parallel, and completed with lower latency. Additionally,
multiple small I/O requests may also be merged into one
request for execution, which reduces the number of physical
I/Os that occur.

PageStore is responsible for page persistence and constantly
replays transactions from the REDO logs to keep pages up
to date. PageStore has its own storage unit called segment. It
manages the entire life-cycle of segments. including data orga-
nization, distribution/replication, I/O control, state transition,
and fault detection and recovery. Multiple REDO log records
are assigned to one segment, and the records that belong
to the same segment are assembled together and shipped to
PageStore through RPC. If a REDO log record is shipped
to PageStore and acknowledged, it is considered durable and
will be applied to the corresponding pages asynchronously,
checkpointing is not required.

Segments in PageStore are replicated to three or six copies
across multiple availability zones. Considering the long-tail
latency issue, fault tolerance, and availability goal, we choose
to implement a quorum replication, and use a gossip protocol
for filling in missing records. Before a log record is shipped
to a PageStore segment, we attach a back-link that represents
the LSN of the preceding log record for constructing the

PageStore

DBEngine

DB Kernel

Buffer Pool

Storage SDK

PageStore SDK

EBP Index

AStore SDK

IO Engine

……

Shipping
Read page (EBP miss)

Read & Write log
Evict & Read page (EBP hit)

AStore

PMEM PMEM PMEM

Log Pool Extended Buffer Pool

Sync ASync

SSD SSD SSD

Old Component New Component

Fig. 2. The PMem accelerated architecture of veDB. AStore sits in a remote
cluster with PMem hardware.

page in the same segment. With the back-link mechanism a
PageStore instance can detect missing logs and gossip with
other instances to retrieve them.

IV. DISTRIBUTED PMEM STORAGE ENGINE: ASTORE

After operating a large fleet of veDB instances for a few years,
we observed that both LogStore’s write latency and Page-
Store’s read latency were high for some applications. To solve
the latency issue identified in veDB, we introduce a PMem-
based storage layer. Instead of embedding the PMem cache in
the same host as the DBEngine (which would increase CPU
contention and latency), we follow a disaggregation architec-
ture [77] that pools the PMem resources from different hosts
and connects them through a high-speed RDMA network. This
results in a storage layer called AStore which replaces the
LogStore. The advantage of having a disaggregated PMem
pool is that it can be scaled horizontally and is independent
of the computing layer.

However, there are some associated performance penalties.
For example, the access speed of the remote cache is slower
than that of the local PMem, and the transmission of pages
across the network incurs additional traffic. To mitigate these
issues, we use low-latency, one-sided RDMA verbs to get
access to AStore. As a result, the I/O operation is truly
run-to-completion, bypassing the CPU of the storage server,
which provides AStore an extremely high read and write
performance—with a read latency of 10µs and a write latency
of 20µs. In contrast, traditional storage systems usually have
a latency of a hundred microseconds.

Meanwhile, financial costs should also be taken into con-
sideration. Although persistent memory devices are expen-
sive, AStore can provide higher throughput and guarantee
more stable performance at a similar cost compared with the
previous SSD-based storage system in our deployment (see
Section VII-B). Furthermore, in typical scenarios, the lifespan
of REDO log in veDB’s LogStore is short because it can be
garbage collected once it is applied to the pages in PageStore,
which happens quickly. Therefore, the capacity reserved for
REDO logs in AStore for each database instance is small and
limited to GB level by default. Overall, the financial cost of
AStore is acceptable in our actual world deployment.

4



Fig. 3. The key modules in the AStore architecture. The system runs on
multiple nodes with PMem hardware. The PMem is accessed directly by the
veDB nodes.

A. Key Modules

AStore is divided into three modules: the AStore Client, the
AStore Server, and the central node cluster manager (CM).
The design of AStore is generic, and is applicable on other
database engines.

The AStore Client is an access module and provides an
external interface with read and write operations over an
append-only space. When the application needs to write, it
first calls the open interface to obtain the segment addresses
from the CM. Then it goes to the corresponding storage
node to obtain a writable continuous segment space. We use
multiple copies of segments to ensure data reliability, with
a configurable replication factor for different segments. By
default, the segment that stores the log has three copies and
the segment storing the page has only one copy. The routing
information is cached in the memory of the AStore Client,
and subsequent reads and writes do not need to go through
the CM.

The AStore Server’s primary task is to efficiently manage
PMem resources, including the data layout, metadata cache,
and background tasks. In addition, the AStore Server will
register the full physical address of PMem devices to the
RDMA network interface card (NIC) and obtain the virtual
address through mmap for space management. The AStore
Server divides the memory into the superblock, segment
meta, I/O meta, and segment storage areas. We use a bitmap
to manage segment applications and releases; every time a
segment is created, a bitmap in memory is used to track free
space. The corresponding bitmap is reset to zero when the
application releases the space.

The Cluster Manager (CM) is responsible for manag-
ing the resources of the entire cluster. Its main functions
include storage node management, registration, fault detection,
background task scheduling, capacity expansion, and load
balancing. In addition, the CM monitors the survival status of
the AStore Server nodes by maintaining heartbeat messages
with each node. The AStore Server node reports capacity,
I/O load, and segment health status in the heartbeat message.
When a new segment is created, the AStore Client obtains the
route of the AStore Server node from the CM and the CM
returns the appropriate nodes according to the capacity and
load of the AStore Server nodes.

Fig. 4. The I/O model for AStore. Client nodes first retrieve routing
information from the CM and then can interact with the PMem on AStore
nodes directly.

B. Supported Operations

In this section, we introduce the critical processes of AStore
in detail, including how the operations, such as create, write,
read, and delete, work.

Create. To create a new segment, the AStore Client sends an
RPC message to the CM to request the allocation of a segment.
Then, the CM selects a storage node, and after receiving
confirmation, the AStore Client sends an RPC message to
apply for new storage space in persistent memory. Because
it is using RPC messages, the entire process of Create takes
a few milliseconds. This delay is much more significant than
the write delay, which is about 20µs.

Write. To write to a segment, the AStore Client appends
the data to the offset of the corresponding segment through a
one-sided RDMA WRITE and records the offset and length.
This way a segment’s effective data length is known after a
failure occurs. If writing to three (configurable) storage nodes
is successful, AStore updates the written length of the segment
in the AStore Client’s segment-meta. If any copy fails, it
returns a failure to the application and freezes the segment
with the current effective length. The writing process only
appends to the end of a segment, which is more friendly to
PMem media and allows the system to achieve extremely low
latency.

AStore highly relies on the persistence of PMem devices
to deliver fast recovery. Therefore, when using RDMA and
PMem in combination, it is necessary to ensure that the data is
actually written to PMem’s persistence domain. Furthermore,
for PMem devices in our environment that only support
Asynchronous DRAM Refresh (ADR), we have to guarantee
that the data is flushed to PMem’s memory controller. In
addition to the persistency requirement, we would also like
to bypass the AStore Server to extract the RDMA network’s
performance potentials fully. After exploring multiple ap-
proaches [78], we finally choose to disable Intel’s data direct
I/O (DDIO) feature [79] on the AStore Server, and leverage
one-sided RDMA READ to flush the data from the cache to
the memory controller of PMem devices and therefore persist
the data in PMem. This approach has been demonstrated to
deliver a near-optimal performance in practice. The entire
write operation combines two one-sided RDMA WRITEs and
one-sided RDMA READ, and these work requests are chained

5



together to reduce memory-mapped I/O (MMIO) operations.
The use of one-sided RDMA verbs in the critical I/O path and
the zero-copy capability of RDMA results in ultra-low write
latency.

Read. The application specifies reading a particular piece of
data using two segment parameters, i.e., offset and length. The
AStore Client checks the validity of the parameters and selects
an online copy to read through one-sided RDMA READ.

Delete. The AStore Client sends an RPC message to both
the CM, requesting to delete a segment from its metadata, and
to the AStore Server, which releases the segment and resets
the bitmap of the allocation manager.

If an AStore Server fails, the segment allocated on the
AStore Server cannot be written. Instead, the application opens
a new segment to write data to, and as long as there are three
(configurable) healthy storage nodes in the cluster, the writing
service can be provided.

C. Data Consistency with One-Sided RDMA

In order to ensure the reliability of the data, the CM detects
any storage failure node and selects a new storage node to
rebuild a lost copy of the segment. If the failed node returns
to the cluster, the segments on it are considered stale and will
be cleaned up by the CM, releasing the PMem space. This
brings significant challenges to the use of one-sided RDMA
READ and WRITE. Because of the read and write process
with one-sided RDMA verbs bypassing the server’s software
stack, the AStore Client directly operates on the PMem of the
storage node. If the replica set carrying the segment changes
due to failure and reconstruction, the AStore Client may not
be aware of it in time and may read and write the wrong
segment, causing an inconsistency.

In order to resolve this issue, the AStore Client and the
AStore Server perform a series of background tasks. First,
the AStore Client regularly checks with the CM to see if
the segment’s route has changed. The AStore Server does not
handle the CM’s request to clean the stale segment immedi-
ately but instead periodically cleans it. This cleaning cycle is
much longer than the AStore Client query cycle. Therefore,
the AStore Client can recognize the stale segments in time
and will not read/write inconsistent data. In order to speed up
the release of the stale segment, the time interval between the
AStore Client receiving updated routes from the CM is short
compared to the interval of segment cleaning. In addition, the
routing update is performed at segment granularity so that
the number of segments in AStore does not make the CM a
bottleneck.

There is another scenario that may cause data inconsisten-
cies. Suppose AStore Client A fails after creating segment X,
and the new AStore Client B reclaims the space of segment X.
After a while, AStore Client A returns to the cluster and issues
a now inconsistent RDMA WRITE to segment X. We avoid
this problem by directly maintaining a lease in the AStore
Client and the CM. When AStore Client A returns to the cluster
and communicates with the CM, it will find that the lease has
expired or the owner has been changed to AStore Client B.

V. BOOSTING VEDB PERFORMANCE WITH ASTORE

In veDB, LogStore was initially built over an SSD-based
blob storage system and asynchronously submitted I/O to
BlobGroups in parallel to reach high throughput. But there
are several bottlenecks in the system:

1) For a single write request, SSD and TCP based write
path is still high in latency.

2) CPU resources are required to schedule every I/O re-
quest. This I/O schedule burden increases latency and
causes periodic spikes in latency.

Compared to SSD-based LogStore, AStore offers a low
latency storage by adopting one-sided RDMA verbs to directly
access remote persistent memory. It can improve veDB’s
performance in REDO log write. In addition, AStore also
offers a larger and cheaper capacity for caching compared
to DRAM. Therefore, we replaced LogStore with AStore for
veDB and added Extended Buffer Pool backed by AStore, as
shown in Figure 2. In this section we will discuss the details
of using AStore for fast log persistency and extended buffer
pool.

A. Log Space Management
As described in the Section III, in the original design

of LogStore, the storage SDK manages data using logical
containers named BlobGroup. In the updated implementa-
tion that incorporates AStore, a new logical container called
SegmentRing has been introduced to manage a collection of
append-only segments. This new design simplifies both write
and read processing, reduces the number of RDMA calls and
improves overall performance of veDB.

There are two key differences between BlobGroup and
SegmentRing. First, the large log write I/O is not split into
smaller ones in SegmentRing. Writing 256KB block using
one-side RDMA takes about 0.1ms according to our test. That
is fast enough in our use cases.

Second, SegmentRing utilizes a ring buffer structure to
manage a collection of segments arranged in a circular fashion.
The size of each segment within the container is fixed and can
be configured by clients (default size is 1GB). Additionally,
the size of the SegmentRing is also configurable, with a typical
setting of 50 segments. Upon initialization of DBEngine, all
segments with an index starting from 0 within the ring are
pre-created by the storage SDK.

Inside each segment, the content is divided into two parts:
the header and the REDO log data. The header contains a
status and an LSN field. The status field indicates whether
a segment is empty, in-use, full, or in-error, and the LSN
field indicates the LSN of the first REDO log record stored
in the segment. When DBEngine crashes, a binary search can
be performed on all headers in the SegmentRing and it can
efficiently identify the largest LSN. This LSN will be used as
the new starting LSN when normal operations resume.

B. High-Performance Log Write Path
In the original veDB architecture, writing each REDO log

buffer to remote storage asynchronously resulted in additional

6



costs such as data copying and thread-context switching. By
replacing LogStore with AStore, the I/O submission process
was simplified to a run-to-completion model where requests
are either executed to finish or queued. Directly writing the
REDO log buffer to the remote PMem managed by AStore
through RDMA eliminates the need for redundant data copy-
ing and thread-context switching. The use of one-sided RDMA
primitives also bypasses the software stack on the AStore
server. Registering the global log buffer (PMem-backed) of
DBEngine to the RDMA NIC during initialization further
reduces data copying.

Because the log space is organized as a SegmentRing in
AStore, when the storage SDK receives a REDO log write
request, it checks the usage status of the current segment. If
the current segment has enough space for the incoming write,
it appends the REDO log to the segment. Otherwise, it freezes
the current segment, advances to the next segment in the ring,
and sets its header to the start LSN of the current REDO log.
Once the write request is completed, the global persistent LSN
is advanced, and the database transaction can be committed.

C. Extended Buffer Pool Using AStore

veDB uses a computing and storage separation architecture.
This architecture has many advantages, but suffers from in-
creased network communication as a result. In veDB’s original
design, if the data page being accessed is not cached in
the computing node, it needs to be read from the remote
PageStore, causing a delay of approximately 1ms. During this
wait time, the transaction thread cannot perform any other
actions, resulting in increased transaction latency.

AStore resolves this issue by reducing read latency. Reading
a 16KB data page only takes AStore 20µs, which is in the
same order of magnitude as a local SSD. Additionally, PMem
provides a much larger capacity than RAM. So in addition to
cache data pages in DBEngine’s buffer pool, we also cache
pages evicted from buffer pool in AStore. We call this cache
in AStore the extended buffer pool (EBP).

We implement a global extended buffer pool management
structure that encapsulates segment creation, writing, reading,
and release. Each data page is read and written with a unique
identifier. Since the loss of EBP pages only reduces EBP hit
ratio and will not impact the query’s correctness, we use the
replication factor as one for EBP segments (AStore supports
configurable replication factor for segments). The client side
of the storage layer is modified to maintain the list of pages
available in EBP.

The EBP is managed by the storage SDK through a data
structure called the EBP Index, which is a collection of
key-value pairs {(space no, page no), lsn + segment id +
offset}. The key (space no, page no) is called page ID. The
EBP Index is updated whenever the EBP is modified during
buffer pool load and evict operations. When the DBEngine
calls the storage SDK interface to evict a page, it will decide
whether to write to the EBP according to the space priority
and EBP capacity. After successfully writing the page to the
EBP, the storage SDK updates the EBP Index in memory. For

Fig. 5. An illustration of how the extended buffer pool (EBP) fits into the
system architecture of the DBEngine.

the pages existing in the EBP index, if DBEngine modifies
them in its local buffer pool, a mapping of page ID and its
latest LSN will be maintained and periodically sent to the
AStore server in batches. AStore servers keep this mapping
in memory for pruning out stale data pages when rebuilding
EBP index during recovery of DBEngine failures.

We provide two policies for managing the EBP capacity:
Priority or flat. The flat strategy does not partition the EBP
space, and all pages evicted from the main buffer pool are
placed into the space evenly. Under the priority management
strategy, we divide the total EBP space into areas with priority.
Pages of priority can be placed in any space with the same or
lower priority, and pages with the highest priority can occupy
up to 100% of the total space.

D. Page Management in the EBP

Page management includes two processes: compaction and
eviction. In the compaction process, AStore writes data in
an append-only manner. When a page is written to AStore
multiple times, the page space of the older version on the
segment will be marked as garbage. Dropping or truncating
a table will also produce garbage . In order to improve the
space utilization of the EBP, AStore will track the amount of
garbage on each segment and periodically process segments
with a high amount of garbage, moving the valid data to
the new segment and releasing the old segment. This process
is called compaction, it is transparent to the DBEngine, and
its frequency is configurable. If compaction is not enabled,
the segments with high amounts of garbage will be released
directly, releasing part of the valid pages in the process.

We use a simple least recently used (LRU) cache replace-
ment policy to manage EBP space for page eviction. In order
to reduce the contention of multiple threads updating the LRU
cache simultaneously, we use multiple LRU lists to manage
these pages. When the DBEngine reads or writes a page from
the EBP, it computes the hash of page ID to determine which
LRU list the page belongs to. If the space usage of the EBP
has reached a threshold we select a certain number of pages
to evict based on the order of recency. The evicted page space
is reclaimed for reuse through compaction.

E. Recovering from Failures

Recovering the REDO log space. When the DBEngine
process crashes, it uses the standard MySQL recovery proce-

7



dure to recover. This involves scanning the logs starting from a
checkpoint (determined by the LSN) and applying all REDO
logs. The starting log record can be easily located using a
binary search of the SegmentRing, as the start LSN is stored
in the header of each segment. After all REDO logs have been
applied, any uncommitted transactions are rolled back and the
recovered DBEngine continues to service the application.

Since log segments are replicated, the failure of one AStore
Server is transparent to DBEngine. When a writing failure
occurs in a segment, the storage SDK will close the failed
segment, create a new segment, and automatically retry to
write to the new segment.

Recovering of Extended Buffer Pool. There are two
cases to consider. The first case is DBEngine process failure.
Since we use disaggregated PMem store for EBP it usually
survives DBEngine failures. To use the data in EBP, DBEngine
collects information on pages cached in each AStore server
and rebuilds the EBP index. The system will keep the most
up-to-date EBP pages and discard stale ones. Each AStore
server periodically receives page IDs and their latest LSN
from DBEngine and stores them in memory. In response to a
recovery request from the DBEngine each AStore server scans
pages stored in local PMem, compares their LSNs with the one
in memory, discards those with older LSNs, then returns on
the valid page IDs along with their position to the DBEngine.

The other case is AStore server failure. In the current
implementation, when a AStore server crashes, pages stored
in it are considered lost and are removed from EBP index.
Since the EBP pages are evenly scattered on a cluster of
AStore servers, failure of one (or a small number) of AStore
servers will only reduce the cache hit ratio, and will not affect
query correctness. Since AStore uses PMem as storage, it can
leverage the persistent property of PMem and recover EBP
data pages locally once the AStore server is restarted. We left
this optimization for future work.

VI. PUSH-DOWN FOR QUERY ACCELERATION

veDB uses a single-threaded processing model for handling
queries. This means that some operations, such as semantics
analysis, optimization, data reading, and execution, are com-
pleted without multi-thread synchronization, meaning no extra
waiting time. However, when the amount of data is large, only
one thread processes the request, while other idle threads and
resources cannot help accelerate the process, causing their
response time to increase. This disadvantage is even more
prominent because of additional network traffic generated by
accessing remote storage.

We introduce a push-down query (PQ) feature to solve these
issues. The idea is to identify eligible fragments of the query
plan and execute them in storage servers (e.g., PageStore).
Since the storage is distributed, we decompose each push-
down request into multiple concurrent tasks based on the page
distribution in PageStore and send them to the corresponding
server for execution. The computing layer collects the executed
results for additional processing (e.g., secondary aggregation)
and returns them to the user. With the addition of an extended

buffer pool powered by AStore, the query fragments can also
be executed in the AStore server, leveraging the pages cached
in EBP.

The query push-down feature provides the following advan-
tages:

1) Parallel reading of pages from multiple storage nodes
improves I/O access performance

2) Push-down operations to the storage layer reduce net-
work transmission overhead. For example, projection,
filtering, and aggregation operations can be pushed down
directly to the storage layer.

3) CPUs in the storage layer can be used to assist queries.
This is especially effective on PMem servers because ac-
cess data in the PMem page cache is through one-sided
RDMA primitives, with their CPUs largely uninvolved.

A. Query Push-Down Framework

veDB’s original query optimizer is modified to recognize
and mark query plan fragments that can be pushed down to
the storage layer for parallel processing. During the execution
of these plan fragments, we identify the data pages needed by
the query and generate RPC calls containing the plan fragment
and page IDs plus the corresponding page LSN and send them
through storage SDK. Presently, only scans with simple filters
and/or aggregation over a single table reference are supported.
The push-down plan fragment has no joins or subqueries. Each
plan fragment is serialized and passed down to the storage
layer through these RPC calls, and then the returned results
are passed back to the DBEngine and merged to be consumed
by the following plan operator through registered callback
functions .

Currently, the decision of pushing down the execution of
plan fragments or not is simply decided by a threshold of the
number of rows to be scanned by the plan fragment and a
session variable enabling the PQ feature. Developing a cost-
based optimization is planned for a future release of veDB.

A separate process containing the veDB executor code for
scan, filter, and aggregation operator is deployed in each
PageServer and AStore server. The processes will accept the
plan fragments from DBEngine, compute the results and return
them to DBEngine.

B. Push Query Execution Down to AStore

When a PQ request is sent through storage SDK, the original
request gets split up into parallel tasks by looking up the
requested pages in the EBP index. We created a group of tasks
for those pages in the EBP index, one for each AStore server
that cached eligible pages. Similarly, for those pages not found
in the EBP index, a group of tasks will be created for each
PageServer that persists in the relevant data pages. Each task
contains the push-downed plan fragment, a list of data pages,
and their corresponding LSNs. These tasks are dispatched to
corresponding servers in parallel.

When executing the PQ task, the AStore Server performs
similarly to the PageServer: it reads the corresponding pages
from the EBP and then applies the operators to these pages.

8



Component Deployment Configuration

PageStore,
LogStore

4 Bare metal boxes
for each store:
1 Root Server
3 Data Servers

CPU: Intel Xeon Gold 5218
@2.30GHz 64 cores
Memory: 376 GB
NVMe SSD: 4 × 3.4TB, 2 ×
2.8TB
Network: Mellanox ConnectX-5
25Gbps; OFED-5.0

AStore
4 Bare metal boxes:
1 Root Server
3 Data Servers

CPU: Intel Xeon Platinum 8260
@2.40GHz 96 cores
Memory: 128 GB
PMem: 1TB Intel® Optane™
Persistent Memory
Network: Mellanox ConnectX-5
25Gbps × 2; OFED-5.0

veDB,
Client

Virtual Machine:
CPU 20 core
Memory 160GB
Storage 250GB

CPU: Intel Xeon Platinum 8260
@2.40GHz 24 CPU
Network: Mellanox ConnectX-5
25Gbps; OFED-5.0

TABLE I
THE SPECIFICATIONS OF EACH PART OF THE SYSTEM USED BY OUR

EXPERIMENTAL ANALYSIS.

The difference is that AStore Server reads the local PMem
while the PageServer reads the local disk.

The read and write interfaces provided by the AStore Server
are through one-sided RDMA verbs. These operations do not
require the participation of the AStore Server CPUs, so the
EBP on the AStore Server may only need a few cores, leaving
plenty of CPU resources idle. In addition, the large number of
pages stored in the EBP is warm data likely to be requested by
incoming queries. By executing push-down query fragments
on the PMem servers, we can use idle CPU resources and
warm data pages in the EBP.

Recall that we implemented two strategies for managing
EBP space, priority and flat. The flat strategy is not optimal
for push-down queries because pages have an equal chance
of being evicted from the EBP, reducing the chances that the
requested data remains in the EBP for consecutive queries.
Consequently, the priority strategy is better for supporting
push-down queries. We can allocate more high-priority space
for tables used often by the push-down queries to ensure that
most of its pages are not evicted from the EBP.

VII. EXPERIMENTAL EVALUATION

In this section, we quantify the impact of our PMem read/write
acceleration, extended buffer pool, and query push-down. First,
we compare the transaction performance of veDB with a tra-
ditional SSD-based LogStore and our PMem-based LogStore
using the TPC-C [80] benchmark. Then, we demonstrate the
acceleration of our PMem based extended buffer pool with
both TPC-C and TPC-CH [81] benchmarks. Lastly, we test
the effect of pushing execution partial queries to our EBP
hosts to accelerate the execution of queries. All experiments
are performed in a cluster with the configuration shown in
Table I.

A. AStore for Logging Acceleration

In the first set of tests, we show the effect of using AStore as
REDO log storage and test it on both a standard benchmark
and our internal customer workloads. We first conducted a
simple log write test and saw significant improvement in both
bandwidth and latency. Then, we measured the latency and
transaction rate changes using the TPC-C benchmark and our
internal workloads.

Avg. Write La-
tency (ms) Avg. I/OPS

Avg.
Bandwidth
(MB/s)

W/O PMem 0.638 1,527 5.97
W/ PMem 0.086 11,465 44.79

TABLE II
MICRO BENCHMARK FOR LOG WRITING WITH AND WITHOUT PMEM

Log Writing Micro-Benchmark. Since the database kernel
usually spends a significant amount of time writing the REDO
log, we conducted a micro benchmark to measure how the log
write latency was affected using AStore. We develop a micro
benchmark tool that continuously writes 4KB pages to either
AStore or the regular LogStore in a single thread and measures
the latency, I/OPS, and bandwidth. The results are shown in
Table II. AStore provides an almost 7× improvement in write
latency, I/OPS, and bandwidth.

TPC-C Throughput and Latency. Here we compare the
throughput and latency of TPC-C benchmark on an original
veDB deployment with the one deployed with AStore. As
shown in Figure 6, veDB with AStore performs better in all
cases, and the throughput significantly increases with more
workload pressure. Without AStore, the throughput peaks
at 68,000 transactions per second (TPS); with AStore, the
throughput peaks at nearly 90,000 TPS, bringing more than
a 30% performance improvement.

Additionally, we collected both P95 and P99 latency for
both configurations and saw that veDB with AStore achieves
a lower latency consistently. The results of P95 are shown
in Figure 7. The results of P99 are similar and omitted due
to space limitations. Note that AStore’s latency improvements
begin to decline as the number of clients increases beyond 64.
This pattern of dropping throughput under high concurrency
is consistent with what we have observed with MySQL 8.0
in a similar test where TPC-C throughput peaked with 32
concurrent clients.

Order Processing Workload. We have identified some
internal use cases that did not perform well on veDB, and we
would like to see if AStore can help improve the performance.
One of them is an application that performs batch operations
on order requests. In this test scenario, the orders of a vendor
are batched into one transaction block. The vendor’s account
balance record is updated in the transaction, and the updated
balance record is returned and inserted into the order flow
table.

The requirements of this scenario are:
1) The INSERT data is wide, about 2KB.
2) The UPDATE is a hot row update. There are often many

concurrent updates for the same merchant.
3) The customer requires the performance of this scenario

to reach 10,000+ TPS.
We tested the performance for a single insert operation and

the whole order processing transaction. Figure 8 shows that
using AStore brings significant improvements for both tests.
For the single insert transaction, veDB with AStore can reach
over 10,000 TPS with only 8 clients. In contrast, veDB without
AStore just has 3,339 TPS with 8 clients. We observe more
than 3× improvement. For the order processing transaction,
veDB with AStore reached over 10,000 TPS with just 64

9



0K
10K
20K
30K
40K
50K
60K
70K
80K
90K
100K

1 4 8 16 32 64 128 256 512 1024Tr
an

sa
ct

io
n

Pe
r M

in
ut

e 
(T

PM
C

)

Number of Client Threads

TPC-C Throughput

veDB veDB+Astore

Fig. 6. veDB with AStore improves through-
put in TPC-C test with peak performance of
nearly 90,000 TPS with 64 clients, up 30%.

0

200

400

600

800

1000

1 4 8 16 32 64 128 256 512 1024

La
te

nc
y 

(m
s)

Number of Client Threads

TPC-C P95 Latency

veDB veDB+ Astore

Fig. 7. veDB with AStore reduces transaction
latency in TPC-C test, showing here p95 re-
duced by 50% at 32 clients at most

0K

5K

10K

15K

20K

25K

8 16 32 64 128 256 512 1024Tr
an

sa
ct

io
n 

Pe
r S

ec
on

d 
(T

PS
)

Number of Clients

Internal Workload Comparison

veDB-order AStore-order veDB-insert AStore-insert

Fig. 8. An evaluation of veDB with AStore using inter-
nal customer workloads. With AStore, veDB reached the
required TPS with 64 clients.

Avg. query latency on stock VEDB

Avg. query latency on  VEDB with AStore

Max query latency on  VEDB with AStore

Max query latency on stock VEDB

Fig. 9. Average and maximum transaction latency while running an internal
advertisement library with and without AStore. Using AStore is approximately
20× faster.

clients, but the native veDB needed more than 512 clients
to meet the target.

Advertisement Workload. Internally, we have a core data
processing library for advertising, with a strict latency re-
quirement for its queries (∼10ms for P99 latency). As veDB
separates computing and storage, our initial tests showed
that the P99 latency for the tested queries might reach up
to ∼150ms on veDB. Adding AStore to accelerate logging
reduces the P99 latency on veDB to ∼5ms, which is much
better than the stock veDB and MySQL.

We conducted the test in an environment where the real
application workloads were duplicated and directed simulta-
neously to a stock veDB and a veDB with AStore enabled.
We show a comparison of query latency between those two
cases in Figure 9. On average, AStore accelerates queries by
nearly 20×, where most queries are complete in ∼5ms. The
latency improvement over the worst case is equally significant
for average, which drops from ∼500ms to ∼20ms. Note
that the improvement in this test is significantly greater than

the writing latency improvement seen in the single-threaded
micro-benchmark in Section VII-A. This is because AStore
uses one-sided RDMA and has fewer CPU contentions, which
brings more benefits in the multi-threads scenario as the
simultaneous transactions do not have to wait for each other.

The standard TPC-C and the internal benchmarks show
that using AStore for logging acceleration improves through-
puts and dramatically reduces transaction latencies. We also
observed that the throughput of veDB with AStore peaked
earlier (at 64 clients) than the one without AStore (peaked at
128 clients). This behavior is consistent with other studies of
PMem [20], [21], which also observe a decrease in read and
write performance as concurrent accesses increase, leading the
workload to be CPU-bound.

B. Extended Buffer Pool

Impact of AP workload. Firstly, we test if the extended
buffer pool can reduce the impact of adding analytical pro-
cessing (AP) workloads when the database is dealing with
transaction processing (TP) workloads. We use the TPC-CH
benchmark for this test. The database is loaded with 1000
warehouses of data and has 32 TP clients. We use different
numbers of AP clients, either 0, 1, or 8, and run the test for 30
minutes after 5 minutes of warm up. As the Figure 10 shows,
adding one AP query stream reduces the TP throughput by
5%, and eight AP streams reduce the throughput by nearly
30%. The contention of pages in the buffer pool causes this.
However, if we turn on the extended buffer pool, we see
consistent improvement in transaction throughput with EBP.

AP query latency. In this experiment, we test the acceler-
ation effect of the extended buffer pool on analytical queries.
We use the TPC-CH benchmark dataset with 1000 warehouses
and select a subset of OLAP queries whose execution time is
below 1000 seconds. The experiment is done with two buffer
pool configurations, one with a 16GB buffer pool and one with
32GB. In both cases, the EBP is configured with a fixed size
of 256GB and is enabled and disabled alternately. Each query
is run once to get the buffer pool warmed up, then the query
is run three times more, and the average elapsed time of those
three runs is recorded. Finally, we divide the EBP-disabled
elapsed time by the EBP-enabled elapsed time to compute the
speedup factor provided by the EBP.

10



0K

10K

20K

30K

40K

50K

60K

EBP=0G EBP=256G

Tr
an

sa
ct

io
n

Pe
r M

in
ut

e 
(T

PM
C

)
Impact of AP Stream on TP 

Throughput

0 AP  Streams 1 AP Stream 8 AP Streams

Fig. 10. TPC-CH evaluation for AP impact, with
and without the extended buffer pool. The EBP pro-
vides a consistent improvement to TP throughput
with different numbers of AP streams.

0

0.5

1

1.5

2

2.5

3

3.5

4

Q1 Q3 Q6 Q7 Q12 Q16 Q22

Im
pr

ov
em

en
t

EBP Effect on OLAP Query 

 BP-16G BP-32G
Fig. 11. The performance improvement on a se-
lection of TPC-CH benchmark queries. The EBP
provides performance gains when the size of the
query’s working set is larger than the size of the
native buffer pool.

1

2

4

8

16

32

64

128

256

0 256 512 1024

Q
ue

ry
 T

im
e 

(m
s)

EBP Size (GB)

EBP Effect on Internal Workload

Avg. P99
Fig. 12. The effect of the EBP size on an internal
benchmark. For all EBP sizes, the latencies are
reduced.

As Figure 11 shows, query 7 with EBP enabled has more
than 3× improvement in elapsed time in both 16GB and
32GB settings, but query 16 shows little improvement. This
is because the working set of query 7 is larger than 32GB,
so it can use the EBP after it uses up the native buffer pool.
Accessing data from the EBP through RDMA is significantly
faster than fetching that data from a remote storage server.
Query 16, on the other hand, is a simple join with two tables.
Its working set is minimal and can be fit into the 16GB buffer
pool. Therefore, its performance is barely impacted by the
presence of the EBP. All other queries show different degrees
of EBP acceleration, up to 3.5× faster.

Evaluation on internal workload. One of our core oper-
ation databases contains a large amount of data. The primary
table data is nearly 17TB, the index data is 2.3TB, and the
buffer pool is 120GB. The typical query patterns are lookup
queries on primary keys or secondary indexes. However, due to
the large data size, the hit rate of the buffer pool is about 95%,
resulting in a long average response time and a significant
P99 latency. Therefore, we decide to use the EBP to reduce
the overall response time in this database. The experimental
results are shown in Figure 12.

The results show that even with a modest extended buffer
pool of 256GB, the average response time is reduced by 45%,
and P99 query time is reduced by more than 50%. The results
also show a diminishing return of larger EBP size, with each
doubling of the EBP size reducing latency by approximately
half as much as the last, as there is only so much data eligible
to be cached in the EBP.

Combining log caching and EBP. We evaluate the com-
bined effect of AStore for log caching and EBP using the Sys-
bench [82] transactional benchmarking tool to fully measure
the impact of adding AStore layer to veDB compared to the
original veDB. Since adding AStore to the deployment would
introduce additional cost, we want to see that giving roughly
the exact total cost of the hardware, which deployment has a
better performance. Considering the price per GB of PMem
used in the test system is approximately one-third of the cost
of DRAM [83], we reduce the buffer pool size of veDB +

veDB veDB+AStore
Cores Buffer Pool Cores Buffer Pool EBP

32 100GB 32 40GB 180GB
16 40GB 16 20GB 60GB
8 20GB 8 10GB 30GB

TABLE III
THE DEPLOYMENTS THAT ARE USED TO COMPARE VEDB AND VEDB +

ASTORE (WITH EBP) IN FIGURES 13.

AStore by XGB, and set the EBP size as 3XGB. The specific
configurations are shown in Table III. The experiments were
run in a real-world cloud environment.

Figure 13 shows the percentage of improvement in queries-
per-second (QPS) of veDB with AStore and EBP enabled
comparing to the stock veDB. The results show that the
performance gains provided by AStore with EBP are sig-
nificant with less than 64 clients. However, as the concur-
rent clients increase, the improvements decrease. When the
number of clients reaches 256, the improvement diminishes.
This is because veDB would have to do more and more
EBP maintenance work when the throughput increases under
high concurrency. In our current design, each AStore client
(DBEngine in this case) manages the space allocated for EBP
and maintains the EBP index when flushing buffer pool pages
to AStore. This will consume additional CPU resources in
the DBEngine. Moreover, the client uses a lock mechanism
to control concurrent access to the EBP index, which can
cause performance degradation under high concurrency. In
future work, we plan to explore alternatives for the EBP
index management to reduce resource contention under high
concurrency.

C. Push-Down Queries

In this experiment, we assess the effect of offloading some
query operators to the storage layer using the TPC-CH bench-
mark. First, we run the 22 AP queries in TPC-CH with the
original veDB configuration (no EBP, no query push-down)
as a baseline. Second, we enable both query push-down and
the EBP, then rerun the 22 queries. With this setting, eligible
query operators will be pushed down to the EBP host for
execution if the required page can be found in EBP (by
checking EBP index). If the required page is not found in the

11



0%

30%

60%

90%

120%

150%

180%

210%

8 16 32 64 128 256Pe
rc

en
ta

ge
 o

f I
m

pr
ov

em
en

t

Number of Clients

Throughput Improvment with AStore and 
EBP Enabled

32 CPU 16 CPU 8 CPU

Fig. 13. The throughput improvement of veDB
with AStore and EBP enabled. Lower concurrency
environments show more substantial improvement.

0

5

10

15

20

25

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Sp
ee

du
p 

Fa
ct

or

Effect of PQ to Astore

PQ Plan Effect Overall Effect of PQ to Astore

Fig. 14. The effect of push-down queries on the EBP. Some queries show dramatic improvement as
their push-down computations are executed in parallel.

EBP, the operators will be pushed to PageStore for execution.
To minimize the cold buffer effect, all queries are run three
times in each experiment, and the average time of the second
and third runs is used as the query elapsed time. We divided
the query elapsed time in the baseline experiment by that of
the experiments with query push-down, and EBP enabled to
get the speedup factor.

The push-down effect on EBP is shown in Figure 14 orange
bars. When the EBP and query push-down are enabled, queries
1, 6, 11, 13, 15, 20, and 22 have significant improvements
which range from 4× to 24×. Queries 1, 6, and 22 have their
aggregation operations pushed down, significantly reducing the
data transferred and the latency drastically. Likewise, queries
11, 13, and 15 have a selective filter pushed down, significantly
reducing elapsed time. Overall, the geometric mean of elapsed
time speedup of all queries is about 2.8×.

We notice that, for a given query, some query plans are
more friendly to operator push-down than other query plans.
For example, veDB selects a nest-loop join plan for the join
of customer and order tables in query 13 by default. However,
a hash join plan would be selected with query push-down
enabled because it allows more plan fragments to be push-
down. To gauge the effect of query plan changes, we also
run another test in which we disable the EBP and push-down
queries and use a query hint to force the query plan to be the
same as the best push-down plan. The effect of plan change
alone is shown in Figure 14 blue bars. Using the result of this
experiment as a new baseline, we still see 2× speedup of the
geometric mean of elapsed time.

VIII. CONCLUSION

In this paper, we demonstrated how to use PMem and RDMA
to accelerate cloud-native databases. We add PMem to a
distributed storage engine and employ RDMA to access it.
This enhanced distributed storage engine can replace SSD- or
HDD-based storage to accelerate the persistence of the REDO
log, increase the transaction throughput and reduce latency. It
can also host an extended buffer pool to cache hot pages for
queries that access large amounts of data, which is a typical
pattern of analytical queries.

Furthermore, since the data stored in the extended buffer
pool is accessed directly through RDMA without involving the

host CPU, we can push operators to the hosts of the extended
buffer pool and leverage the idle CPU to filter and aggregate
the data.

We demonstrate how these innovations significantly im-
prove the performance of both transactional and analytical
queries. The experiments show that our design can improve
throughput by up to 1.5× and reduce latency by as much as
20× for both standard query processing benchmarks and real-
world applications.

There are a few directions for future development that
can be further explored. The first is to integrate a cost-
based strategy for query push-down so that the system can
automatically decide the push-down strategy to maximize the
benefit. Another is to expand the usage of EBP. For example,
it could be used by stand-by instances that serve read-only
queries. It could also be used to speed up the warm-up
process for the buffer pool during crash recovery. The third
is improving concurrency management for EBP, especially for
concurrent EBP index access. The last is to leverage PMem
persistency to recover EBP locally when an AStore server
fails.

ACKNOWLEDGMENTS

We thank all people who made contributions to the design
and development of the veDB system. Fan Yang and Yong
Zhou conducted most of the tests during their internship at
ByteDance. We greatly appreciate their efforts. Finally, we
thank Varun Gupta and Ron Hu for their careful proofreading
of this manuscript and suggestions for correction.

REFERENCES

[1] ByteDance, “veDB for MySQL,” https://www.volcengine.com/product/
vedb-mysql, (Accessed on 2022-10-05).

[2] J. Tan, T. Ghanem, M. Perron, X. Yu, M. Stonebraker, D. DeWitt,
M. Serafini, A. Aboulnaga, and T. Kraska, “Choosing a cloud dbms:
architectures and tradeoffs,” Proceedings of the VLDB Endowment,
vol. 12, no. 12, pp. 2170–2182, 2019.

[3] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang et al.,
“The snowflake elastic data warehouse,” in Proceedings of the 2016
International Conference on Management of Data, 2016, pp. 215–226.

[4] M. Armbrust, T. Das, L. Sun, B. Yavuz, S. Zhu, M. Murthy, J. Torres,
H. van Hovell, A. Ionescu, A. Łuszczak et al., “Delta lake: high-
performance acid table storage over cloud object stores,” Proceedings
of the VLDB Endowment, vol. 13, no. 12, pp. 3411–3424, 2020.

12



[5] Y. Yang, M. Youill, M. Woicik, Y. Liu, X. Yu, M. Serafini, A. Aboulnaga,
and M. Stonebraker, “Flexpushdowndb: Hybrid pushdown and caching
in a cloud dbms,” Proceedings of the VLDB Endowment, vol. 14, no. 11,
pp. 2101–2113, 2021.

[6] D. Durner, B. Chandramouli, and Y. Li, “Crystal: a unified cache storage
system for analytical databases,” Proceedings of the VLDB Endowment,
vol. 14, no. 11, pp. 2432–2444, 2021.

[7] H. Li, Alluxio: A virtual distributed file system. University of
California, Berkeley, 2018.

[8] S. Shedge, N. Sharma, A. Agarwal, M. Abouzour, and G. Aluç, “An
extended ssd-based cache for efficient object store access in sap iq,” in
2022 IEEE 38th International Conference on Data Engineering (ICDE).
IEEE, 2022, pp. 1861–1873.

[9] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proceedings of the 36th
annual international symposium on Computer architecture, 2009, pp.
2–13.

[10] M. Böther, O. Kißig, L. Benson, and T. Rabl, “Drop it in like it’s hot: An
analysis of persistent memory as a drop-in replacement for nvme ssds,”
in Proceedings of the 17th International Workshop on Data Management
on New Hardware (DaMoN 2021), 2021, pp. 1–8.

[11] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta,
R. Mittal, S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao,
“Amazon aurora: Design considerations for high throughput cloud-native
relational databases,” in Proceedings of the 2017 ACM International
Conference on Management of Data, ser. SIGMOD ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 1041–1052.
[Online]. Available: https://doi.org/10.1145/3035918.3056101

[12] P. Antonopoulos, A. Budovski, C. Diaconu, A. Hernandez Saenz, J. Hu,
H. Kodavalla, D. Kossmann, S. Lingam, U. F. Minhas, N. Prakash,
V. Purohit, H. Qu, C. S. Ravella, K. Reisteter, S. Shrotri, D. Tang,
and V. Wakade, “Socrates: The new sql server in the cloud,” in
Proceedings of the 2019 International Conference on Management
of Data, ser. SIGMOD ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1743–1756. [Online]. Available:
https://doi.org/10.1145/3299869.3314047

[13] A. Depoutovitch, C. Chen, J. Chen, P. Larson, S. Lin, J. Ng, W. Cui,
Q. Liu, W. Huang, Y. Xiao, and Y. He, “Taurus database: How
to be fast, available, and frugal in the cloud,” in Proceedings of
the 2020 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1463–1478. [Online]. Available:
https://doi.org/10.1145/3318464.3386129

[14] W. Cao, Y. Liu, Z. Cheng, N. Zheng, W. Li, W. Wu, L. Ouyang, P. Wang,
Y. Wang, R. Kuan, Z. Liu, F. Zhu, and T. Zhang, POLARDB Meets
Computational Storage: Efficiently Support Analytical Workloads in
Cloud-Native Relational Database. USA: USENIX Association, 2020,
p. 29–42.

[15] D. J. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-Saborit,
A. Avanes, M. Flasza, and J. Gramling, “Split query processing in
polybase,” in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 1255–1266.
[Online]. Available: https://doi.org/10.1145/2463676.2463709

[16] A. Modi, K. Rajan, S. Thimmaiah, P. Jain, S. Mann, A. Agarwal,
A. Shetty, S. K. I, A. Gosalia, and P. Sarthi, “New query optimization
techniques in the spark engine of azure synapse,” Proc. VLDB
Endow., vol. 15, no. 4, p. 936–948, apr 2022. [Online]. Available:
https://doi.org/10.14778/3503585.3503601

[17] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun,
N. Yegitbasi, H. Jin, E. Hwang, N. Shingte, and C. Berner, “Presto:
Sql on everything,” 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pp. 1802–1813, 2019.

[18] X. Yu, M. Youill, M. Woicik, A. Ghanem, M. Serafini, A. Aboulnaga,
and M. Stonebraker, “Pushdowndb: Accelerating a dbms using s3
computation,” in 2020 IEEE 36th International Conference on Data
Engineering (ICDE), 2020, pp. 1802–1805.

[19] Y. Yang, M. Youill, M. Woicik, Y. Liu, X. Yu, M. Serafini, A. Aboulnaga,
and M. Stonebraker, “Flexpushdowndb: Hybrid pushdown and caching
in a cloud dbms,” Proc. VLDB Endow., vol. 14, no. 11, p. 2101–2113,
jul 2021. [Online]. Available: https://doi.org/10.14778/3476249.3476265

[20] D. Koutsoukos, R. Bhartia, A. Klimovic, and G. Alonso, “How to
use persistent memory in your database,” 2021. [Online]. Available:
https://arxiv.org/abs/2112.00425

[21] B. Daase, L. J. Bollmeier, L. Benson, and T. Rabl, “Maximizing
persistent memory bandwidth utilization for olap workloads,” in
Proceedings of the 2021 International Conference on Management
of Data, ser. SIGMOD ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 339–351. [Online]. Available:
https://doi.org/10.1145/3448016.3457292

[22] M. Andrei, C. Lemke, G. Radestock, R. Schulze, C. Thiel, R. Blanco,
A. Meghlan, M. Sharique, S. Seifert, S. Vishnoi, D. Booss,
T. Peh, I. Schreter, W. Thesing, M. Wagle, and T. Willhalm,
“Sap hana adoption of non-volatile memory,” Proc. VLDB Endow.,
vol. 10, no. 12, p. 1754–1765, aug 2017. [Online]. Available:
https://doi.org/10.14778/3137765.3137780

[23] A. van Renen, V. Leis, A. Kemper, T. Neumann, T. Hashida, K. Oe,
Y. Doi, L. Harada, and M. Sato, “Managing non-volatile memory in
database systems,” in Proceedings of the 2018 International Conference
on Management of Data, ser. SIGMOD ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 1541–1555. [Online].
Available: https://doi.org/10.1145/3183713.3196897

[24] G. Liu, L. Chen, and S. Chen, “Zen: A high-throughput log-
free oltp engine for non-volatile main memory,” Proc. VLDB
Endow., vol. 14, no. 5, p. 835–848, jan 2021. [Online]. Available:
https://doi.org/10.14778/3446095.3446105

[25] J. Arulraj and A. Pavlo, “How to build a non-volatile memory database
management system,” in Proceedings of the 2017 ACM International
Conference on Management of Data, ser. SIGMOD ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 1753–1758.
[Online]. Available: https://doi.org/10.1145/3035918.3054780

[26] Arulraj, Joy and Pavlo, Andrew, “Non-volatile memory database man-
agement systems,” vol. 11, no. 1. Morgan & Claypool Publishers, 2019,
pp. 1–191.

[27] J. Arulraj, A. Pavlo, and S. R. Dulloor, “Let’s talk about storage
and recovery methods for non-volatile memory database systems,” in
Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 707–722. [Online].
Available: https://doi.org/10.1145/2723372.2749441

[28] J. Arulraj, A. Pavlo, and K. T. Malladi, “Multi-tier buffer management
and storage system design for non-volatile memory,” 2019. [Online].
Available: https://arxiv.org/abs/1901.10938

[29] J. Arulraj, M. Perron, and A. Pavlo, “Write-behind logging,” Proc.
VLDB Endow., vol. 10, no. 4, p. 337–348, nov 2016. [Online].
Available: https://doi.org/10.14778/3025111.3025116

[30] A. Chatzistergiou, M. Cintra, and S. D. Viglas, “Rewind: recovery
write-ahead system for in-memory non-volatile data-structures,” Proc.
VLDB Endow., vol. 8, no. 5, p. 497–508, jan 2015. [Online]. Available:
https://doi.org/10.14778/2735479.2735483

[31] C. Craft, “Persistent memory in exadata x8m,” 2020. [Online].
Available: https://blogs.oracle.com/exadata/post/persistent-memory-in-
exadata-x8m

[32] T. Ziegler, C. Binnig, and V. Leis, “Scalestore: A fast and cost-efficient
storage engine using dram, nvme, and rdma,” in Proceedings of the 2022
International Conference on Management of Data, 2022, pp. 685–699.

[33] X. Zhou, J. Arulraj, A. Pavlo, and D. Cohen, “Spitfire: A
three-tier buffer manager for volatile and non-volatile memory,” in
Proceedings of the 2021 International Conference on Management
of Data, ser. SIGMOD ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 2195–2207. [Online]. Available:
https://doi.org/10.1145/3448016.3452819

[34] M. Saxena, M. A. Shah, S. Harizopoulos, M. M. Swift, and A. Merchant,
“Hathi: durable transactions for memory using flash,” in Proceedings
of the Eighth International Workshop on Data Management on New
Hardware, 2012, pp. 33–38.

[35] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian,
“The End of Slow Networks: It’s Time for a Redesign,” Proc. VLDB
Endow., vol. 9, no. 7, p. 528–539, mar 2016. [Online]. Available:
https://doi.org/10.14778/2904483.2904485

[36] T. Wang and R. Johnson, “Scalable logging through emerging non-
volatile memory,” Proc. VLDB Endow., vol. 7, no. 10, p. 865–876, jun
2014. [Online]. Available: https://doi.org/10.14778/2732951.2732960

[37] J. Arulraj, M. Perron, and A. Pavlo, “Write-behind logging,” Proc.
VLDB Endow., vol. 10, no. 4, p. 337–348, nov 2016. [Online].
Available: https://doi.org/10.14778/3025111.3025116

[38] S. Chen and Q. Jin, “Persistent b(+)-trees in non-volatile main
memory,” Proc. VLDB Endow., vol. 8, no. 7, p. 786–797, feb 2015.
[Online]. Available: https://doi.org/10.14778/2752939.2752947

13



[39] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in byte-addressable persistent b+-tree,” in Proceedings of
the 16th USENIX Conference on File and Storage Technologies, ser.
FAST’18. USA: USENIX Association, 2018, p. 187–200.

[40] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
Proc. VLDB Endow., vol. 8, no. 7, p. 786–797, feb 2015. [Online].
Available: https://doi.org/10.14778/2752939.2752947

[41] M. Nam, H. Cha, Y.-R. Choi, S. H. Noh, and B. Nam, “Write-optimized
dynamic hashing for persistent memory,” in Proceedings of the 17th
USENIX Conference on File and Storage Technologies, ser. FAST’19.
USA: USENIX Association, 2019, p. 31–44.

[42] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance
hashing index scheme for persistent memory,” in Proceedings of the 13th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’18. USA: USENIX Association, 2018, p. 461–476.

[43] B. Lu, X. Hao, T. Wang, and E. Lo, “Dash: Scalable hashing
on persistent memory,” Proc. VLDB Endow., vol. 13, no. 8, p.
1147–1161, apr 2020. [Online]. Available: https://doi.org/10.14778/
3389133.3389134

[44] Lu, Baotong and Hao, Xiangpeng and Wang, Tianzheng and Lo,
Eric, “Scaling Dynamic Hash Tables on Real Persistent Memory,”
SIGMOD Rec., vol. 50, no. 1, p. 87–94, jun 2021. [Online]. Available:
https://doi.org/10.1145/3471485.3471506

[45] L. Lersch, X. Hao, I. Oukid, T. Wang, and T. Willhalm, “Evaluating
persistent memory range indexes,” Proc. VLDB Endow., vol. 13, no. 4,
p. 574–587, dec 2019. [Online]. Available: https://doi.org/10.14778/
3372716.3372728

[46] Lu, Baotong and Ding, Jialin and Lo, Eric and Minhas, Umar
Farooq and Wang, Tianzheng, “APEX: A High-Performance Learned
Index on Persistent Memory,” Proc. VLDB Endow., vol. 15, no. 3,
p. 597–610, nov 2021. [Online]. Available: https://doi.org/10.14778/
3494124.3494141

[47] G. Psaropoulos, I. Oukid, T. Legler, N. May, and A. Ailamaki,
“Bridging the latency gap between nvm and dram for latency-bound
operations,” in Proceedings of the 15th International Workshop on Data
Management on New Hardware, ser. DaMoN’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3329785.3329917

[48] Y. Wu, K. Park, R. Sen, B. Kroth, and J. Do, “Lessons learned from
the early performance evaluation of intel optane dc persistent memory
in dbms,” in Proceedings of the 16th International Workshop on Data
Management on New Hardware, ser. DaMoN ’20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3399666.3399898

[49] M. Böther, O. Kißig, L. Benson, and T. Rabl, “Drop it in like it’s
hot: An analysis of persistent memory as a drop-in replacement for
nvme ssds,” in Proceedings of the 17th International Workshop on
Data Management on New Hardware (DaMoN 2021), ser. DAMON’21.
New York, NY, USA: Association for Computing Machinery, 2021.
[Online]. Available: https://doi.org/10.1145/3465998.3466010

[50] B. Daase, L. J. Bollmeier, L. Benson, and T. Rabl, “Maximizing
persistent memory bandwidth utilization for olap workloads,” in
Proceedings of the 2021 International Conference on Management of
Data, ser. SIGMOD/PODS ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 339–351. [Online]. Available:
https://doi.org/10.1145/3448016.3457292

[51] A. Shanbhag, N. Tatbul, D. Cohen, and S. Madden, “Large-scale
in-memory analytics on intel(®) optane(™) dc persistent memory,” in
Proceedings of the 16th International Workshop on Data Management
on New Hardware, ser. DaMoN ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3399666.3399933

[52] D. Cohen, T. Talpey, A. Kanevsky, U. Cummings, M. Krause, R. Recio,
D. Crupnicoff, L. Dickman, and P. Grun, “Remote direct memory access
over the converged enhanced ethernet fabric: Evaluating the options,” in
2009 17th ieee symposium on high performance interconnects. IEEE,
2009, pp. 123–130.

[53] Z. He, D. Wang, B. Fu, K. Tan, B. Hua, Z.-L. Zhang, and K. Zheng,
“Masq: Rdma for virtual private cloud,” in Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and protocols for
computer communication, 2020, pp. 1–14.

[54] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-ur
Rahman, N. S. Islam, X. Ouyang, H. Wang, S. Sur et al., “Memcached

design on high performance rdma capable interconnects,” in 2011
International Conference on Parallel Processing. IEEE, 2011, pp. 743–
752.

[55] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
remote memory,” in 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, Apr. 2014, pp. 401–414. [Online]. Available: https:
//www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{\’c}

[56] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro, “No compromises: Distributed
transactions with consistency, availability, and performance,” in
Proceedings of the 25th Symposium on Operating Systems Principles,
ser. SOSP ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 54–70. [Online]. Available: https://doi.org/10.1145/
2815400.2815425

[57] A. Shamis, M. Renzelmann, S. Novakovic, G. Chatzopoulos,
A. Dragojević, D. Narayanan, and M. Castro, “Fast general distributed
transactions with opacity,” in Proceedings of the 2019 International
Conference on Management of Data, ser. SIGMOD ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 433–448.
[Online]. Available: https://doi.org/10.1145/3299869.3300069

[58] C. Buragohain, K. M. Risvik, P. Brett, M. Castro, W. Cho, J. Cowhig,
N. Gloy, K. Kalyanaraman, R. Khanna, J. Pao, M. Renzelmann,
A. Shamis, T. Tan, and S. Zheng, “A1: A distributed in-memory graph
database,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 329–344.
[Online]. Available: https://doi.org/10.1145/3318464.3386135

[59] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, scalable
and simple distributed transactions with Two-Sided (RDMA) datagram
RPCs,” in 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16). Savannah, GA: USENIX Association,
Nov. 2016, pp. 185–201. [Online]. Available: https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/kalia

[60] X. Wei, Z. Dong, R. Chen, and H. Chen, “Deconstructing RDMA-
enabled distributed transactions: Hybrid is better!” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). Carlsbad, CA: USENIX Association, Oct. 2018, pp. 233–
251. [Online]. Available: https://www.usenix.org/conference/osdi18/
presentation/wei

[61] S. Novakovic, Y. Shan, A. Kolli, M. Cui, Y. Zhang, H. Eran,
B. Pismenny, L. Liss, M. Wei, D. Tsafrir, and M. Aguilera, “Storm:
A Fast Transactional Dataplane for Remote Data Structures,” in
Proceedings of the 12th ACM International Conference on Systems
and Storage, ser. SYSTOR ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 97–108. [Online]. Available:
https://doi.org/10.1145/3319647.3325827

[62] P. W. Frey, R. Goncalves, M. Kersten, and J. Teubner, “Spinning
relations: High-speed networks for distributed join processing,” in
Proceedings of the Fifth International Workshop on Data Management
on New Hardware, ser. DaMoN ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 27–33. [Online].
Available: https://doi.org/10.1145/1565694.1565701

[63] C. Barthels, S. Loesing, G. Alonso, and D. Kossmann, “Rack-
scale in-memory join processing using rdma,” in Proceedings of
the 2015 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 1463–1475. [Online]. Available:
https://doi.org/10.1145/2723372.2750547

[64] W. Rödiger, S. Idicula, A. Kemper, and T. Neumann, “Flow-join:
Adaptive skew handling for distributed joins over high-speed networks,”
in 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), 2016, pp. 1194–1205.

[65] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann, “High-
speed query processing over high-speed networks,” Proc. VLDB
Endow., vol. 9, no. 4, p. 228–239, dec 2015. [Online]. Available:
https://doi.org/10.14778/2856318.2856319

[66] F. Liu, L. Yin, and S. Blanas, “Design and evaluation of an
rdma-aware data shuffling operator for parallel database systems,”
in Proceedings of the Twelfth European Conference on Computer
Systems, ser. EuroSys ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 48–63. [Online]. Available:
https://doi.org/10.1145/3064176.3064202

14



[67] P. Fent, A. v. Renen, A. Kipf, V. Leis, T. Neumann, and A. Kemper,
“Low-latency communication for fast dbms using rdma and shared mem-
ory,” in 2020 IEEE 36th International Conference on Data Engineering
(ICDE), 2020, pp. 1477–1488.

[68] L. Thostrup, J. Skrzypczak, M. Jasny, T. Ziegler, and C. Binnig, DFI:
The Data Flow Interface for High-Speed Networks. New York, NY,
USA: Association for Computing Machinery, 2021, p. 1825–1837.
[Online]. Available: https://doi.org/10.1145/3448016.3452816

[69] G. Alonso, C. Binnig, I. Pandis, K. Salem, J. Skrzypczak, R. Stutsman,
L. Thostrup, T. Wang, Z. Wang, and T. Ziegler, “Dpi: the data processing
interface for modern networks,” CIDR 2019 Online Proceedings, p. 11,
2019.

[70] N. May, A. Böhm, and W. Lehner, “Sap hana – the evolution of an
in-memory dbms from pure olap processing towards mixed workloads,”
in Datenbanksysteme für Business, Technologie und Web (BTW 2017),
2017, pp. 545–546.

[71] IBM, “IBM DB2 pureScale,” https://www.ibm.com/docs/en/db2/10.5?
topic=editions-introduction-db2-purescale-environment, (Accessed on
2022-10-05).

[72] F. Li, S. Das, M. Syamala, and V. R. Narasayya, “Accelerating
Relational Databases by Leveraging Remote Memory and RDMA,”
in Proceedings of the 2016 International Conference on Management
of Data, ser. SIGMOD ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 355–370. [Online]. Available:
https://doi.org/10.1145/2882903.2882949

[73] W. Cao, Y. Zhang, X. Yang, F. Li, S. Wang, Q. Hu, X. Cheng,
Z. Chen, Z. Liu, J. Fang, B. Wang, Y. Wang, H. Sun, Z. Yang,
Z. Cheng, S. Chen, J. Wu, W. Hu, J. Zhao, Y. Gao, S. Cai,
Y. Zhang, and J. Tong, PolarDB Serverless: A Cloud Native Database
for Disaggregated Data Centers. New York, NY, USA: Association
for Computing Machinery, 2021, p. 2477–2489. [Online]. Available:
https://doi.org/10.1145/3448016.3457560

[74] Oracle, “Under the Hood of an Exadata Transaction,” http://www.
adms-conf.org/2021-camera-ready/jia presentation.pdf, 2021 (Accessed

on 2022-05-25).
[75] D. K. Gifford, “Weighted voting for replicated data,” in Proceedings

of the Seventh ACM Symposium on Operating Systems Principles,
ser. SOSP ’79. New York, NY, USA: Association for Computing
Machinery, 1979, p. 150–162. [Online]. Available: https://doi.org/10.
1145/800215.806583

[76] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “Aries:
A transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging,” ACM Transactions on
Database Systems (TODS), vol. 17, no. 1, pp. 94–162, 1992.

[77] W. Cao, Y. Zhang, X. Yang, F. Li, S. Wang, Q. Hu, X. Cheng, Z. Chen,
Z. Liu, J. Fang, B. Wang, Y. Wang, H. Sun, Z. Yang, Z. Cheng,
S. Chen, J. Wu, W. Hu, J. Zhao, Y. Gao, S. Cai, Y. Zhang, and
J. Tong, “Polardb serverless: A cloud native database for disaggregated
data centers,” in Proceedings of the 2021 International Conference
on Management of Data, ser. SIGMOD ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 2477–2489. [Online].
Available: https://doi.org/10.1145/3448016.3457560

[78] C. Douglas, “Rdma with pmem,” 2015.
[79] Intel, “Intel® Data Direct I/O Technology,” https://www.intel.com/

content/www/us/en/io/data-direct-i-o-technology.html, (Accessed on
2022-05-25).

[80] S. T. Leutenegger and D. Dias, “A modeling study of the tpc-c
benchmark,” ACM Sigmod Record, vol. 22, no. 2, pp. 22–31, 1993.

[81] Cole, Richard and Funke, Florian and Giakoumakis, Leo and Guy,
Wey and Kemper, Alfons and Krompass, Stefan and Kuno, Harumi
and Nambiar, Raghunath and Neumann, Thomas and Poess, Meikel
and others, “The mixed workload ch-benchmark,” in Proceedings of the
Fourth International Workshop on Testing Database Systems, 2011, pp.
1–6.

[82] A. Kopytov, “Sysbench: a system performance benchmark,”
http://sysbench. sourceforge. net/, 2004.

[83] “Intel’s Optane DIMM Price Model,” https://thememoryguy.com/intels-
optane-dimm-price-model/, (Accessed on 2022-10-10).

15


